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Abstract. We introduce an octopus-inspired, underwater, soft-bodied robot
capable of performing waterborne pulsed-jet propulsion and benthic legged-
locomotion. This vehicle consists for as much as 80% of its volume of rubber-like
materials so that structural flexibility is exploited as a key element during both
modes of locomotion. The high bodily softness, the unconventional morphology
and the non-stationary nature of its propulsion mechanisms require dynamic
characterization of this robot to be dealt with by ad-hoc techniques. We
perform parameter identification by resorting to a hybrid optimization approach
where the characterization of the dual ambulatory strategies of the robot is
performed in a segregated fashion. A Least Squares-based method coupled with a
Genetic Algorithm-based method is employed for the swimming and the crawling
phases, respectively. The outcomes bring evidence that compartmentalized
parameter identification represents a viable protocol for multi-modal vehicles
characterization. However, the use of static thrust recordings as the input signal in
the dynamic determination of shape-changing self-propelled vehicles is responsible
for critical underestimation of the quadratic drag coefficient.

Keywords: soft robotics, underwater robots, multi-modal locomotion, aquatic propul-
sion, legged locomotion, parameter identification
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Hybrid parameter identification of a multi-modal underwater soft robot 3

the examples of completely soft-bodied terrestrial
organisms are limited in number and size. On the
contrary, in the aquatic environment there is a wealth
of soft-bodied organisms, heterogeneous both in size
and kind, characterized by locomotor performances
that are comparable to those of aquatic vertebrates.
This suggests that the aquatic environment may
be congenial for emphasizing the advantages of soft
bioinspired robots [11, 12].

Taking the cue from this, the authors have
developed a new kind of soft robot for underwater
applications: the PoseiDRONE [10], Fig. 1. The robot,
inspired by octopodes and composed for the most part
of flexible rubber-like materials, is robust, cheap, small-
sized and lightweight. Its multi-modal locomotion,
which integrates crawling by means of soft-limbs and
pulsed-jet swimming, provides the chance to employ it
both as a sea-bottom crawler as well as a sea-dwelling
vehicle. The soft nature of this vehicle enables it to
handle interactions with the surrounding environment
by relying on its own structural compliance rather than
on accurate control.

However, the complex morphology of the robot,
along with its largely unsteady modes of locomotion,
make the determination of the whole-body dynamics
and hence the control problem especially hard to
deal with. A rigorous definition of the key elements
which characterize this vehicle during its crawling and
swimming dynamics is thus of primary importance.
As a consequence, we resort to the experimental
determination of the dynamics of the vehicle by means
of a hybrid Least Squares/Genetic Algorithm (LSGA)
parameter identification approach. This method
entails treating the vehicle as two distinct systems
based on the mode of locomotion employed and
applying the direct Least Squares (LS) method or the
Genetic Algorithm-based (GA) method respectively to
the swimming and the crawling regimes.

The work is presented according to the following
outline: first the overall design of the vehicle is
illustrated, separately addressing the swimming and
the crawling unit. Then experiments performed with
the whole robotic system are presented, followed by the
identification procedure established respectively for the
swimming and crawling modes of locomotion.

2. Robot Design

PoseiDRONE was developed by combining design
principles from soft robotics and biomimetics, electing
cephalopods as the source of inspiration. The robot
consists of a single platform onto which a crawling
and a swimming unit are joint, thus enabling multi-
modal locomotion. The system relies on four flexible
limbs for legged-locomotion and a pulsed-jet thruster

Figure 2. Schematic representation of the PoseiDRONE
swimming unit: (1) cable attachment points over the elastic
shell, (2) axial location of the cross sections subject to cable
traction, (3) the nozzle, (4) inflow valves, (5) the motor, (6) the
crank, (7) the axial pulley which distributes the cable over the
various cross sections, (8) the cables.

for waterborne propulsion, both of which are made
of silicone. Each of these elements is linked to a
rigid, cross-shaped aluminium frame, which supports
the motors used to actuate the soft limbs. The overall
weight of the robot is 0.75 kg, and 80% of its volume is
composed of silicone, providing the vehicle with high
structural flexibility. The casts and the rigid parts were
manufactured via 3D FDM printing with ABS. In order
to enable aquatic operation of the vehicle, surfaces were
made homogeneous and waterproof via the 3DFinisher
acetone vapour treatment (3DNextech s.r.l).

The structural compliance of the vehicle is a key
element during the swimming and crawling routines.
During the former, the actuation entails the inflation
and deflation of a deformable chamber whose elastic
response mediates the recursive occurrence of this
cyclic routine. In addition, the ability of the vehicle
to undergo volume variation thanks to its soft nature
is known to provide significant positive feedback on
thrust, [13, 14]. During crawling, limbs flexibility
is exploited to handle the contact with the ground,
eliminating the need for fine and continuous control of
the limb position and making the legged-locomotion
robust.

2.1. Swimming Unit

Waterborne propulsion of the robot is dealt with by
pulsed-jet propulsion. The thrusting unit operates
in analogy to what cephalopods (i.e. octopuses and
squids) do to swim, see [15]: an elastic chamber
is sequentially deflated and inflated thus driving a
succession of expulsion and ingestion stages of ambient
fluid. This process enables the vehicle to expel finite
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Hybrid parameter identification of a multi-modal underwater soft robot 4

slugs of water which, by conservation of momentum,
propel the vehicle in the direction opposite to the jet.
This mode of aquatic propulsion has lately attracted
the interest of the research community due to its
association with impulse-rich discontinuous jets [16]
and hence its aptness for designing agile vehicles. The
thrusting unit (Fig. 2) employed in the present work,
introduced in [17], benefits from the assets provided by
pulsed-jet propulsion [18] while reducing the adoption
of rigid components, thus preserving the previously
mentioned advantages of a soft body.

The thruster is a hollow shell 160 mm long, made
of EcoFlex-0030 silicone. The collapse of this elastic
chamber is executed throughout the whole axial extent
of the shell by placing five cable attachment points,
element (1) in Fig. 2, at four sections along the axis of
the shell, element (2) in Fig. 2. At each cross section
the five cables are attached, at one end, to the wall of
the rubber shell and are gathered, at the other end,
through a fixed pulley located in the upper part of the
hollow chamber, element (7) in Fig. 2. In the present
thrusting unit, the fixed pulley is immersed in the
silicone mould located in the dorsal part of the vehicle.
The shortening of the cables is due to the rotation
of a crank which, by pulling the cable attachment
points, deforms the shell into a lobe-shaped geometry,
squeezing water through the nozzle, for details see [19].

This thrusting unit is capable of ejecting 120 mL of
the fluid stored within the chamber at unstrained state,
corresponding to ∼ 34% of its initial volume. The
refill stage passively exploits the elastic energy of the
strained walls of the vehicle —a good example of how
suitable material properties can simplify control [20]—
and is facilitated by three umbrella valves located
around the base of the nozzle, element (4) in Fig.
2. The motor which acts upon the cables allows the
vehicle to pulse within the range of 0.8 to 1.5 pulsations
per second (pps).

2.2. Crawling Unit

The design of the crawling unit elaborates on
the foundations of bioinspired legged locomotion by
exploiting passively compliant soft limbs, in order to
achieve robust benthic locomotion over fragile and
irregular substrates.

Bioinspired legged locomotion relies on the
eccentric trajectory of the feet in order to achieve
the forward displacement of the body, [21, 22]. The
classical mechanisms which enable to replicate such
kind of trajectory are the four-bar [23] or the three-
bar linkage mechanisms. In PoseiDRONE we employ
a modified three-bar mechanism where structural
compliance in the distal bar is introduced, element (3)
in Fig. 3 and 4. Beside enabling a gentle interaction
with the substrate, limb compliance has been found to

Figure 3. Schematic representation of the PoseiDRONE
crawling unit: (1) the flexible limbs, (2) plastic element
facilitating the adhesion of the steel cable within the silicone
limb, (3) the steel cable, (4) spherical bearing (allows translation
and rotation), (5) the motor, (6) the crank, (7) the motor case
and (8) the aluminium frame supporting the limbs and the
thruster.

Figure 4. A schematic of the three-bar mechanism during the
limb actuation routine: (a) side view and (b) top view. The
elements depicted represent: (1) the flexible limbs, (2) plastic
element facilitating the adhesion of the steel cable within the
silicone limb, (3) the steel cable, (4) the spherical bearing for
the steel cable, (5) the motor, (6) the crank, (7) the motor case,
(8) the aluminium frame supporting the limbs and the thruster,
(9) upper crank circular loop and (10) lower crank eccentric loop.

support enhanced stability of the locomotion [24].
Each of the soft limbs consists of a conic, rubber-

like unit, element (1) in Fig. 3 and 4, with a
flexible cylindrical bar, a steel cable, embedded in
the limb principal axis, element (3). The motion is
transmitted to each of the limbs by a dedicated three-
bar mechanism which drives the distal bar into an
eccentric loop, element (10) in Fig. 4. This, along
with the structural compliance of the limb, mediates
the routine described below (Fig. 4): the arm adheres
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Hybrid parameter identification of a multi-modal underwater soft robot 5

Figure 5. Experimental test setup. The experiments entail the vehicle swimming to the end of the tank, then diving to the bottom,
crawling towards the opposite end of the tank and eventually surfacing. The highlighted elements are: (1) the LED-markers for 3d
tracking and (2) the controllable buoyancy module.

to the surface, it pushes against the ground and
eventually detaches from it, thus enabling the cycle to
start over. The geometry of the three-bar mechanism
was tuned in order for the distal part of the leg to
maximize the extent of the push while at the same
time easing a clearance condition in the detachment
phase.

The mechanism was developed with a combination
of commercial and purposely manufactured parts. A
21 mm crank is 3D printed in acrylonitrile butadiene
styrene (ABS) and an ABS hollow rod lodges a steel
cable of diameter 2 mm and length 10 mm, which
in turn is embedded into a cone of EcoFlex-0030
silicone. The third element of the mechanism is the
rigid frame of the robot, element (8) in Fig. 3 and
4, made of a 2 mm thick foil of aluminium alloy
6061. As for the actuation, each limb is driven by a
dedicated GM12a Solarbotics DC motor housed inside
a waterproof resin holder, element (7). The crank
is connected to the driving shaft on one side and to
the connecting hollow rod on the other by means of
a low friction cylindrical joint. The steel cable is
also constrained by a spherical bearing which enables
rotation and translation, element (2) in Fig. 3 and 4.
This spherical bearing allows the arm to flex in every
direction to fully exploit its compliance.

3. Experimental Methods

A series of experiments were devised in order to
assess the vehicle performance during multi-modal
locomotion and to provide a dataset to be used
for parameter identification. Two kind of tests
were performed: locomotion analysis and thrust
measurements. Both of these were performed in a 1150
mm long, 590 mm wide and 500 mm deep tank filled
with salt water.

During locomotion analysis an inflatable buoyancy
module was fitted to the dorsal part of the robot,
see element (2) in Fig. 5. By varying the inflation
state of the buoyancy module, the mean density of
the robot was determined, thus enabling it to heave
across the water column. Swimming was performed
by setting the overall relative density of the robot to
0.97 with respect to that of the surrounding medium,
whereas, crawling tests were performed in different
settings (details in what follows) characterized by a
relative density greater than 1. The tests entailed the
routine depicted in Fig. 5: the vehicle would swim from
one end of the tank to the opposite one, then dive to
the bottom of the tank, it would then crawl back to
the opposite end wall and eventually rise to the initial
position.

Motion analysis was based on the three dimen-
sional motion tracking of the robot. Three markers, see

Figure 6. Results from a prototypical locomotion test. In
(a), the displacement along the vertical direction of the CoM
is reported and in (b) the surge speed. The colours highlight the
swimming, diving and crawling phase.
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Hybrid parameter identification of a multi-modal underwater soft robot 6
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Figure 7. Experimental setup for thrust measurement: (1) the
shaft which links the force sensor to the vehicle, (2) the level of
the free surface, (3) the centre of mass (CoM) of the vehicle, (4)
the issuing jet of fluid, (5) the point of application of the reaction
force to thrust generation, (6) the force sensor and (7) the pivot
of the shaft.

element (1) in Fig. 5, were fitted to the moving body
and eight additional ones were placed in the tank at
the boundaries of the workspace. High-speed cameras
were employed to track the position of the markers, and
in this way derive the displacement of the CoM of the
robot. The Direct Linear Transformation (DLT) tech-
nique was then applied in order to transform two 2D
images in a single 3D representation. This provided a
full state of the robot consisting of x, y and z positions
of the CoM as well as of roll, yaw and pitch angles.

During swimming the tests were repeated at
a motor angular velocity ranging from 5.0 to 15.0
rad/s, i.e. from 0.8 to 1.5 pulsations per second
(pps). During crawling each leg was actuated at a
constant speed of ∼12.6 rad/s and the tests were
repeated by varying the mean body density (ρr)
and the position of the buoyancy module, i.e. the
distance b and angle β between the CoM and the
Centre of Buoyancy (CoB), see Fig. 3. This resulted
in the robot attaining a variety of different stances
during crawling and, thus, different gaits which ranged
from quadrupedal crawling to bipedal locomotion
[25, 24]. The fastest configuration (ρr = 1238 kg/m3,
b = 0.09 m, β = 12.6 ◦) was retained for parameter
identification. This corresponds to a bipedal gait [26]
in which the robot exhibited a mean speed ẋ = 4.4
cm/s (with 0.24 cm/s standard deviation).

An example from one of these experiments is
reported in Fig. 6. Here the displacement of the
CoM of the robot during translation across the tank

is displayed, Fig. 6(a). During the first 20 s the robot
is floating, and the swimming routine is active; between
∼20 s to 30 s the buoyancy module is being deflated,
letting the vehicle sink to the tank bottom. After
this, the crawling routine is activated, as highlighted
by the marked oscillations of the CoM. Similarly, Fig.
6(b) depicts the magnitude of the surge velocity during
these three phases. The oscillatory speed recorded
during the sinking stage at ∼30 s is determined by
the robot establishing contact with the ground.

Further experiments were performed to estimate
the thrust force generated by the pulsed-jet actuator,
which was later used as input signal to the model in the
parameter identification for the swimming dynamics.
Fig. 7 shows the experimental rig developed to perform
such measurements. The vehicle, fully submerged in
ambient fluid, was fixed to a shaft, element (1) in
Fig. 7, which constrains the motion to a pure rotation
about the pivot, element (7) in Fig. 7. Friction is
limited by a low resistance bearing in the pivot. Upon
thruster activation, the force experienced by the vehicle
is transferred to the load cell, (6) in Fig. 7, an S-
beam Futek (FSH00103). The sensor has a maximum
capacity of 22 N and a sensitivity of 2 mV/V; in
addition the load cell is coupled with an amplifying
module Meco 2039 Ministrain.

An example of one of these tests is reported in
Fig. 8, where the information concerning the motor
(motor speed, position and current) and the resulting
thrust are depicted. Based on the actuator design,
the propulsion routine entails the motor pulling the
cables for half of its rotation and releasing them for
the remaining half [19]. The elastic shell is thus subject
to cable-driven collapse (during which fluid is expelled
across the nozzle) and then spontaneously inflates due
to potential elastic energy (sucking in ambient fluid
through the valves and the nozzle). This routine is
observed in the recordings: at 0◦, element (1) in Fig.
8(a), the motor starts pulling the cables, which drive
the collapse of the shell and the expulsion of fluid. This
is confirmed by the motor speed decreasing, the current
increasing and by the occurrence of positive peaks of
thrust, Fig. 8(b). Once the motor has reached 180◦

the expulsion of fluid has terminated and the maximum
amount of expellable fluid has been ejected, giving rise
to the major thrust peak, element (2) in Fig. 8. After
this the shell starts to inflate, driving water inside
the chamber through the nozzle which causes negative
thrust to occur.

4. Identification methods

In order to formulate a model-based controller for
the robot [27], or to guide and inform future designs
by means of simulation studies [28, 29, 30, 31], the
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Hybrid parameter identification of a multi-modal underwater soft robot 7

Figure 8. Combined recordings from the force sensor and the
motor encoder for the thrust measurement tests. In (a) the
motor speed, in red, and the motor shaft position, in blue,
throughout a series of pulsations. The indexes (1) and (2)
respectively point at the instants when expulsion of fluid start
and terminates. In (b) the current absorbed by the motor, red,
and the thrust measured by the force sensors, blue.

identification of unknown model parameters is of
primary importance. This procedure aims at finding
a set of parameters that allow model equation to
faithfully predict the behavior of the robot, minimizing
the discrepancies between predicted and observed
behavior. As a consequence, this procedure is usually
based on an optimization algorithm which attempts
to match the dynamics predicted by the equations to
that observed during experimental tests performed in
comparable environmental conditions, [32].

Because of the marked distinction between the
two modes of locomotion, parameter identification was
dealt with separately for the crawling and swimming
phases. This is motivated by the two operative
conditions being clearly separated, never overlapping,
dependent on different parameters and characterized
by largely different dynamics. A first difference
between the two regimes is related to hydrodynamic
parameters. While, during the swimming phase,
border effects can be neglected, this does not hold
in the crawling phase, where the robot is very close
to the substrate. Another difference is entailed by
the immersion state of the buoyancy module: almost
completely immersed in the crawling phase, partially
immersed in the swimming phase. This clearly affects
both the added mass and the drag coefficients. The
dynamics of the robot is also considerably different
in the two regimes: while in the swimming phase the
robot translates along the x direction, during crawling
the robot undergoes heave and pitch oscillations. As
a consequence, the number, the type and the value of
relevant parameters differ in the two locomotions.

We resort to an identification procedure which we

refer to as hybrid LSGA approach based on the direct
Least Squares (LS) method for the swimming phase
and on a Genetic Algorithm (GA) for the crawling
phase. The procedure for both routines entails a
training stage and a testing stage. In the former, the
actual identification occurs, eventually outputting the
estimated parameters. The latter entails the testing of
these parameters in a different configuration from that
of the identification. These analyses are performed at
quasi-steady state regime.

4.1. Swimming Dynamics Identification

The equation governing the dynamics of a neutrally
buoyant body swimming along the surge direction x,
is described by eq.(1).

m̃ẍ = −Λẋ|ẋ|+ τ (1)

where ẋ is the velocity in the surge direction and
m̃ = M + mas

is the effective mass comprising of
the inertia of the robot M and its added mass mas

during swimming. The drag acting on the swimming
vehicle is based on the ensemble viscous quadratic drag
coefficient Λ, while τ is the pulsed-jet thrust generated
by the cyclic routine of inflation and deflation of the
silicone shell, as reported in Fig. 8(b).

Model equations governing the swimming phase,
eq.(1), thus require the identification of mas

and Λ.
To do so, data extracted from thrust measurements
(section 3) are used as input signal in eq.(1). This
yields a velocity profile which can be readily compared
to the one extracted from locomotion analysis of the
freely swimming vehicle. Validation of the estimated
parameters is achieved by means of the mismatch
between the estimated velocity and the real velocity
of the robot measured in tank experiments. Eq. (1) is
linear in the parameters, thus enabling the employment
of the Least Squares method. The direct version of
the Least Squares method from [33] was implemented,
and the velocity signal directly adopted, avoiding the
need of numerically deriving the acceleration. The
swimming phase identification process was performed
as follows.

Thrust analysis : thrust measurements are per-
formed at various pulsation frequencies (from 0.8 to
1.5 pps) in order to cover the same range of pps em-
ployed during locomotion analysis. Thrust generation
in the soft-bodied actuator presented in section 2.1 has
been found to exhibit a highly non-linear behavior due
to its dependence on the elastic response of the shell
during the refill stage [34, 19]. Hence experimental
measurements are needed as a reliable estimate of the
input signal for the identification procedure, Fig. 9(a)
and Fig. 10(a).

Filtering : noise in the experiment recordings arise
from sources such as wave reflections from the tank
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Hybrid parameter identification of a multi-modal underwater soft robot 8

Figure 9. Swimming phase training set: (a) pulsed-jet thrust
input signal for the identification; (b) surge speed at quasi-steady
swimming regime; (c) CoM surge displacement throughout the
whole experiment.

walls and vibration of the tether. In order to reduce
these, velocity signals were treated with a Savitzky-
Golay filter.

Test selection: two trials were chosen to build
the training and the test set. These were selected
by making sure that analogous frequencies had been
recorded in the thrust experiments.

Parameter identification: the identification data
set composed by the pair vectors (ẋ, τ) was used
to apply the direct version of the Least Squares
method, whose implementation (based on [33]) is
briefly described in the following.

The hydrodynamics equation which describe the
surge motion, eq.(1), can be rewritten as follows:

ẍ = − Λ

m̃
ẋ2 +

τ

m̃
= αẋ2 + γτ = [ẋ2 τ ] · [α γ]T (2)

with α = −Λ/m̃ and γ = τ/m̃. The identification data
set is composed ofN samples (ẋk, τk), corresponding to
the values of the signals (ẋ, τ) at discrete time instants
tk. Eq.(2) can be integrated between two generic
subsequent time instants tk and tk+1 yielding:

∫ tk+1

tk

ẍdt =

[∫ tk+1

tk

ẋ2dt

∫ tk+1

tk

τdt

]

· [α γ]T (3)

By approximating the integral with the rectangle
method, the previous equation can be rewritten as
follows:

ẋk+1−ẋk =
[
ẋ2
k(tk+1 − tk) τk(tk+1 − tk)

]
·[α γ]T (4)

If the signals are uniformly discretized, the difference
between two subsequent time instants is equal to the
interval h, therefore the previous equation can be
simplified as follows:

ẋk+1 − ẋk = h
[
ẋ2
k τk

]
· [α γ]T (5)

Considering the N samples which compose the
identification set, the previous equation can be
expanded to N rows in the following manner:







ẋ1 − ẋ0

ẋ2 − ẋ1

...
ẋN − ẋN−1







︸ ︷︷ ︸

y

= h







ẋ2
0 τ0

ẋ2
1 τ1
... ...

ẋ2
N−1 τN−1







︸ ︷︷ ︸

H

·
[
α
γ

]

︸︷︷︸

θ

(6)

Solution for the vector θ thus reads,

θ̂ = (HTH)−1HTy. (7)

The standard deviation can be computed as,

σ̂θ =
√

diag ((HTH)−1))σ2
ǫ (8)

where the term σ2
ǫ is the variance of the zero mean

Gaussian measurement noise, which can be estimated
as:

σ̂2
ǫ =

(y −Hθ̂)T (y −Hθ̂)

dim(y)− dim(θ)
(9)

In order to validate the estimation θ̂, the percentile
parameter error p

θ̂
= 100(σ̂θ)/|θ̂| was finally

computed, [35].
Test : the testing phase consisted in comparing

the velocity predicted by the model (provided with
identified parameters and a given thrust signal, i.e.
Fig. 9(a) and Fig. 10(a)) with the real velocity of
the robot recorded in a tank experiment. The error
between the real and the estimated velocity signals
was then calculated and a statistical analysis was
conducted on the error signal.

4.2. Swimming phase results

By applying the identification procedure for the
swimming phase, the parameter vector θ̂, the standard
deviation σ̂θ and the percentile parameter error p

θ̂

were computed (Tab. 1). In order to validate the
parameters, they were fed into the dynamic model,
eq.(1), to estimate the swimming velocity of the robot
in a working condition not used in the identification
phase. The velocities predicted by the model in the
identification and testing conditions are compared with
real ones in Fig. 9(b) and Fig. 10(b), where the
employed thrust signal is also shown, Fig. 9(a) and
Fig. 10(a). The identification set and the two test
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Hybrid parameter identification of a multi-modal underwater soft robot 9

Figure 10. Swimming phase testing set: (a) pulsed-jet thrust
input signal for the identification; (b) surge speed at quasi-steady
swimming regime; (c) CoM surge displacement throughout the
whole experiment.

sets are characterized by different actuation frequencies
of the pulsed-jet thrust, respectively 11.47 and 11.76
rad/s. The error between the estimated and real
velocities was then calculated for the identification and
the test data. A statistical analysis of the velocity error
was conducted by calculating the statistical indexes
reported in the Table 2, where mean, std and max

respectively represent the error average value, standard
deviation and maximum error values. Prediction of the
CoM displacement throughout the whole duration of
the experiments and based on the identified parameters
is reported in Fig. 9(c) and Fig. 10(c).

Table 1. Identified parameters for the swimming phase: added
mass and quadratic drag.

mas
[kg] Λ [kg/m]

θ̂ 2.768 5.094
σ̂θ 0.0054 0.2424
p
θ̂

1.9% 16.76%

4.3. Crawling dynamics identification

While crawling, the robot dynamically interacts not
only with the fluid, but also with the substrate. As a
consequence, beside drag and added mass, additional
parameters describing the mechanical properties of the
legs and their interaction with the substrate must be

Table 2. Accuracy of the identification procedure for the
swimming phase based on the error between the real and
predicted velocities from the training and test sets.

Training Test set
mean [%] 17.6 31.5

std [%] 61.1 54.4
max [%] 13.9 12.3

accounted for. These quantities will be subject to
parameters estimation.

The locomotion of the robot is mainly planar i.e.
the CoM approximately moves along the xy plane. A
simplified sagittal model was thus developed, instead
of one that accounts for all the degrees of freedom of
the real robot. The model comprises a central body
with three DoF (two translations, one rotation) and
four legs, all of which are immersed in water, Fig.
3. Each compliant leg is dynamically modelled as a
massless spring-damper system, whose kinematics is
derived from the three-bar mechanism described in
[24]. Dynamics equations are detailed below:

m̃cẍ =

[
4∑

n=0

tn(Fkx
+ Fcx)n + tn(Ftx + Fnx

)n

]

+ (10)

+ Fdrx

m̃cÿ =

[
4∑

n=0

tn(Fky
+ Fcy )n + tn(Fty + Fny

)n

]

+ (11)

+ Fdry + Fg + Fb

Jϑ̈0 =

[
4∑

n=0

tn(Mk +Mc)n + tn(Ms)n

]

+ (12)

+Mb +Mdr

Eq.(10, 11) account for the translations experi-
enced by the robot in the sagittal (xy) plane. On the
left hand side (LHS) of these equations, m̃c = M +mac

represents the effective mass during crawling, which
differs from the swimming effective mass due to the
crawling added mass term mac

, to be determined.
The right hand side (RHS) terms in square

brackets in Eq.(10, 11) account for reaction forces
arising from ground contacts (Fk, Fc) and fluid
resistance, referred to here as sculling forces, (Ft, Fn).

The reaction forces have an elastic (Fk) and a
damping (Fc) component. For example, in the x
direction, Fkx

= k dǫx, while Fcx = c dǫ̇x, with dǫx
representing the compression state of the limb in x.
The terms k and c = 2 dr

√
kM , to be determined

via identification, respectively represent the elastic and
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Hybrid parameter identification of a multi-modal underwater soft robot 10

damping coefficients. Additional parameters (to be
identified) related to the interaction of the limbs with
the ground are the static (µs) and dynamic (µd) friction
coefficients, which do not appear in these equations
(see [24] for additional details).

The viscous drag experienced by each of the
four limbs is divided in a tangential (Ft) and normal
(Fn) component (relative to the radial axis of the
arm), which depend, respectively, on the associated
tangential (λt) and normal (λn) drag coefficients, as
in [36]. The viscous term of each individual limb
(sculling forces) is summed to the force Fdr, which
accounts for the drag experienced by the central body
as it moves along the surge and heave directions. For
example, in the x direction, Fdrx = Λt

2
ẋ|ẋ|. The drag

coefficients Λt, λt and λn are all to be determined via
identification.

The tn coefficients, updated by a routine detecting
collisions between each limb and the ground, determine
which forces act on the body at a given instant in
time. When a limb is in contact with the ground
(tn = 1, tn = 0) reaction forces are included and
sculling forces are neglected. When a limb is detached
from the ground (tn = 0, tn = 1), contact forces are
not computed, with sculling forces being accounted for
instead.

Dynamics in the vertical direction y, eq.(11),
include body forces such as gravity (Fg) and buoyancy
(Fb). These depend on the mean density of the
robot (ρr) which in turn accounts for both material
properties and extent of inflation of the buoyancy
module. The incorporation of the separation distance
b between the CoM and the CoB and their relative
orientation β with respect to the median plane (Fig.
3) enables to account for dynamics that are peculiar to
underwater legged locomotion [25, 24].

Finally, eq.(12) describes the torques about the
axis z orthogonal to the sagittal plane, determining the
pitch of the robot (ϑ0). The quantity J which appears
in the LHS of the equation represents the aggregate
inertia of the body. Relevant moments appearing in
the RHS are Mk, Mc, Ms, Mb which respectively
represent the moments arising from elastic, damping,
sculling and buoyancy forces. An additional term Mdr

which accounts for viscous forces acting against body
rotations about the z axis is also taken in consideration.

A summary of the relevant parameters to be
estimated for the crawling phase is reported in Tab.
3. Since the equations governing the crawling phase
are not available in closed form, nor are they linear in
the parameters, the parameter estimation optimization
problem was solved using Genetic Algorithms (GAs)
[37]. The objective of the optimization process is
to find the set of unknown model parameters that
minimizes the discrepancy between the model and the

experimental reference data, which in this case consists
of tracks of the CoM acquired during tank experiments
(section 3). The GA-based identification procedure is
executed as described below.

Pre-processing and filtering : among the experi-
ments described in section 3, the ones in which the
robot exhibited the faster and more stable locomotion
were selected. These correspond to the case of a mean
robot density ρr = 1238 kg·m−3. In order to reduce the
effects of measurement noise, CoM trajectories were
treated with a Savitzky-Golay low-pass filter.

Features extraction and optimization target : the
behavior of the robot during each test was character-
ized based on a series of locomotion-specific features
which include the amplitude (a), frequency (f), and
mean displacement (y) of the CoM heave oscillations,
along with the mean surge crawling speed (ẋ): the com-
parison between predicted and recorded trajectories
is thus performed within a four dimensional features
space. To compute the optimization target, features
were extracted based on the last 5 s of tank testing,
i.e. when quasi-steady regime had been attained, and
averaged over all the trials performed in the selected
configuration. The resulting target features vector is,

fT = (a∗, f∗, ẋ
∗

, y∗)

= (0.0074045 m, 1.9831 Hz, 0.0403 m/s, 0.1272 m)

Formulation and parameters encoding : the pa-
rameters estimation was performed as a real-coded
bounded minimum optimization problem. The
genome,

G = (k, dr, µs, µd,mac
, J,Λt,Λr, λt, λn)

was formulated based on direct encoding, i.e. parame-
ters explicitly appear in the genome.

Parameter bounds : parameters bound were
defined according to physically plausible limit cases.

Table 3. Parameters to be estimated for the crawling phase,
their allowed range of variability, and the output values of the
identification procedure.

Bound Value

k [N/m] [25, 400] 205.8
dr [0, 1.5] 1.1
µs [0.6, 0.9] 0.77
µd [0.6, 0.9] 0.61

mac
[kg] [0.755, 7.55] 6.65

J [kg m2] [0.0003, 0.018] 0.018
Λt [kg/m] [0.11, 145] 63.6
Λr [kg/m] [0.0001, 1] 0.068
λt [kg/m] [0, 0.08] 0.026
λn [kg/m] [0, 0.3] 0.033
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Hybrid parameter identification of a multi-modal underwater soft robot 11

Figure 11. Comparison between tank experiments and output
from equations integration based on the identified parameters
for the training case, ρr = 1238 kg ·m−3: (a) heave oscillations
of the CoM, (b) surge speed at quasi-steady crawling regime and
(c) CoM surge displacement throughout the whole experiment.

As an example, the lower bound for the body drag
coefficient Λt is that of a streamlined body with
a circular reference cross section of radius 30 mm,
while the upper bound is that of a circular cylinder
capable of enclosing the entirety of the robot. Similar
considerations concern the definition of the other
bounds. In the case of the tangential and normal drag
coefficients of the legs, data from studies on the sculling
of tapered conical shapes was used [36].

Fitness function: for each genome G, the features
vector fG is estimated, and the resulting fitness is
computed as the sum of normalized squared errors
with respect to the target features vector. The fitness
function, f(G), is cast as follows:

f(G) =

{
Pfall if robot fell,
∑4

i=1

(
fT−fG

fT

)2

otherwise,
(13)

where Pfall is a penalty term assigned to choices
of the unknown model parameters which cause the
simulated model to fall to the ground. A fixed positive
penalty of 100 is assigned, plus an additional penalty
that depends on how much time the simulated robot
managed not to fall, i.e.,

Pfall = ⌈100 + 5 · (te − tfall)⌉,

where te is the total expected execution time and
tfall is the instant when falling occurs. Operators
in the bottom branch of the assignment, eq.(13),
are intended as element-wise vector operators, fT is

Figure 12. Comparison between tank experiments and output
from equations integration based on the identified parameters
for the testing case, ρr = 1178 kg ·m−3: (a) heave oscillations of
the CoM, (b) surge speed at quasi-steady crawling regime and
(c) CoM surge displacement throughout the whole experiment.

the target features vector, and fG is the features
vector characterizing the behavior of the robot for the
parameters G.

Experiments: for each choice of the unknown pa-
rameters the equations were integrated over te = 25 s.
In analogy with tank experiments, features were ex-
tracted in a regime window constrained to the last 5 s
of execution.

Testing : after the estimation procedure (training
stage) the output parameters were tested in a different
operative condition (testing stage), not used during
the training and compared with tank experiments
performed in the same conditions.

4.4. Crawling phase results

Parameters estimated by the genetic algorithm are
reported in Tab. 3. The outcome features vector from
the best genome is

fG = (a, f, ẋ, y) = (0.0074043 m, 1.9829 Hz,

0.040302 m/s, 0.12719 m)

entailing a discrepancy with respect to the target
fT of 2.012 · 10−8. To compare the behavior of the
model against the one of the robot, the characteristic
oscillation of the CoM in the y axis is analysed, Fig.
11(a) and 12(a). The forward speed ẋ and position x
are reported as well for each case, Fig. 11(b-c) and
12(b-c).

In Fig. 11(a) the CoM track of the model
simulated with the estimated parameters is overlapped
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Hybrid parameter identification of a multi-modal underwater soft robot 12

Figure 13. Vehicle surge speed during swimming (a), diving (b) and crawling (c) stages of the locomotion test case. From t = 15s
to t = 25s (diving phase) no model predictions are available, thus recorded data are reported only.

onto a tank experiment which exhibits the same
robot average density ρr = 1238 kg ·m−3 (the one
used for the estimation procedure, i.e. the training
condition). The accuracy of the estimated parameters
is subsequently assessed via the comparison against a
testing condition (i.e. not used during the parameters
estimation phase), where ρr = 1178 kg · m−3, and
compared with tanks experiments performed with this
reference density. Table 4 summarizes errors and
standard deviation arising from the comparison of the
position signals, computed on a regime window of 5s.

Table 4. Crawling phase parameters estimation: errors
computed from the comparison between the real position profiles
and those achieved with estimated parameters

Training Test
mean [%] 1.5 1.5

std [%] 4.3 3.5
max [%] 1.0 0.8

5. Discussions

The identification was performed on a training set
and compared against the locomotion analysis at
quasi-steady regime. Surge speed was used as the
fitting criteria for the swimming phase, while a
number of features describing heave oscillations of
the CoM, as well as the surge speed, were used for
the crawling, where the robot exhibits more complex
dynamics. Subsequently, the estimated parameters
were used to predict the vehicle dynamics in a different
configuration from that of the training set. This was
done both at quasi-steady, Fig. 10 and 12, and during
transitory regime, Fig. 13.

The values identified for the swimming dynamics
suffer of a fairly significant mean error, in particular
for what concerns the test set, see table 2. In
addition, the percentile parameter error is significantly
high for the quadratic drag coefficient, though this

value falls within the range encountered in [35]. Our
current identification highlights critical inaccuracy for
what concerns the drag coefficient Λ, as opposed
to [35], where larger p

θ̂
values are associated with

added mass estimation. This highlights two major
problems with the present identification procedure.
First, the mismatch between estimated and measured
surge speed could depend on the experiment being
affected by tank walls wave reflections which slow down
the vehicle in the terminal stage of the swimming trial,
see Fig. 10(b). However, the major criticism lies
in the use of the static thrust as the input signal to
eq.(1), i.e. measured with the robot being held still.
Thrust estimation from static experiments neglects
effects associated with shape change, which can lead
to underestimating thrust for as much as 30% of the
actual value when the vehicle is freely swimming, [13].
This in turns causes the quadratic drag coefficient to
be underestimated as well. When the Λ identified
in this way is used to predict the vehicle dynamics,
the output surge speed appears overestimated, see
Fig. 10(b). While consistent results are observed
prior to quasi-steady regime attainment, Fig. 13, CoM
surge displacement is found to quickly drift from the
observed data, Fig. 10(c).

In the crawling phase, estimated parameters
enable a closer match between the robot and the
model, both in training and testing condition (Fig.
11(a) and 12(a), Tab. 4). The good qualitative and
quantitative match in the testing condition suggests
that the parameters are not dramatically overfitted
to the identification data, and the model is actually
capable of generalizing to unseen circumstances.
Some discrepancies are however observed between the
predicted and the measured crawling surge speed
(Fig. 11(b) and 12(b)) and CoM surge displacement
(Fig. 12(c)). Although the number of involved
parameters and their interactions makes it hard to
infer the individual responsibilities of each term in
the overall prediction accuracy, a number of potential
causes for these discrepancies could be identified,
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Hybrid parameter identification of a multi-modal underwater soft robot 13

corresponding to simplifying assumptions made in
the design of the crawling model, as well as during
the identification procedure. First, the sagittal
model deliberately neglects some of the DoF of the
robot. It is possible that some of the dynamics
currently being overlooked by the model (such as
rolling oscillations) do in fact play a more relevant
role than expected in the overall body dynamics.
Another considerable simplification lies in how the
flexible limbs were abstracted in the model (as mass-
less linear spring-damper systems). In particular, the
complex dynamics of the distal part of each limb
(silicone cone in Fig. 3) are overlooked. Additionally,
ground collisions are modeled as punctual impacts of
the spring-damper system with the substrate, while
in reality they occur as distributed interactions along
an extended contact area arising from the sprawling
of each soft silicone limb onto the ground. Similarly,
the observed discrepancies may arise from an overly
simplistic friction model (detailed in [24]). Limbs can
occasionally flex outside the sagittal plane, and their
passive dynamics while freely moving in the fluid could
affect sculling forces [36], which are known to play a
relevant role in the locomotion of this robot [24]. The
drag experienced by the buoyancy module (Fig. 5) is
implicitly aggregated with the one affecting the main
body, which is potentially overly simplistic given the
spatial separation and relative size of the two objects.
Border effects could also play a relevant role when the
robot translates close to the substrate.

Finally, the identification procedure currently uses
data from a single experimental trial and operative
condition, with other trials being used for testing
purposes only: better generalization performances
could be achieved by making use of data from more
than one trial during the parameters estimation phase.
This could be achieved in our setting by simultaneously
minimizing the model-data discrepancy in a number
of different operative conditions, either defining an
aggregate fitness function or by employing truly multi-
objectives optimization schemes, which are easily
supported by genetic algorithms.

The comparison of the estimated values for
swimming and crawling regimes confirms that both
the added mass (2.768 kg vs 6.65 kg) and the
ensemble quadratic drag coefficient (5.094 kg m−1 vs
63.6 kg m−1) are markedly different, as anticipated
by observing the kind of interactions taking place
between the vehicle and its surroundings (section 4).
This supports our choice of performing the parameters
identification procedure in a segregated fashion for the
two operative conditions.

In spite of the aforementioned limitations, the
identified parameters enable the models to predict
the overall vehicle behavior in a realistic locomotion

experiment such as that presented in Fig. 5, where
the early non-stationary regime is accounted for, Fig.
13. This demonstrates that the procedure employed
hereby could be extended to deal with controllers
design or path and mission planning. The results
are also of importance for simulation-driven studies
targeting design improvements [38, 28, 29], based
on evolutionary techniques [39] or other bioinspired
principles [40, 41].

6. Conclusions

In this paper we have introduced an octopodes-inspired
aquatic soft robot capable of shape-changing pulsed-
jet propulsion and benthic legged-locomotion. This
represents the first example of a new generation of
soft multi-modal vehicles which could complement
the capabilities of commercial underwater robots
by comfortably navigating in cluttered and fragile
submerged environments currently precluded to both
robots and divers.

The vehicle’s highly unconventional morphology
and unsteady modes of underwater propulsion has re-
quired us to undertake an ad-hoc identification proce-
dure aimed at addressing the multi-modal nature of
its locomotion. This was based on a hybrid Least
Squares/Genetic Algorithm-based experimental deter-
mination which supports the uncoupled characteriza-
tion of the robot dynamics during swimming and crawl-
ing. While this approach has been found to work satis-
factorily for the crawling regime, the results highlight
that accurate experimental characterization of shape-
changing pulsed-jet self-propelled vehicles cannot be
performed by relying on static thrust input signals
alone. The employment of static thrust measurement,
where shape-change-driven effects are neglected [13],
eventually can yield an underprediction of the esti-
mated quadratic drag coefficient as large as ∼50%.

However, segregated parameter identification can
be regarded as a sound methodology to reliably address
the need to experimentally characterize new breeds of
unconventional multi-modal vehicles, [42].

As the interest for multi-modal bioinspired
vehicles increases [42], the need to derive a reliable
dynamics characterization of these morphologically
complex and unconventional machines is deemed to
become of primary importance. Despite its limitations,
the segregated parameter identification presented here
can be regarded as a sound methodology to address
this requirement.
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