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Abstract. The construction industry is a capital-intensive sector that
is steadily turning towards mechanized and automated solutions in the
last few decades. However, due to some specificities of this field, it is
still technologically behind other sectors, such as manufacturing. Robotic
technologies provide room for improvements, that could lead to econom-
ical, technical, and also social benefits. We present a possible conceptual
framework for an autonomous robot for indoor demolitions, featuring en-
hanced perceptual capabilities, situational awareness, as well as intuitive
Human-Robot Interaction (HRI) paradigms. The paper deals with sev-
eral aspects of the demolition task, ranging from perception, to planning,
to HRI. With respect to perception, we focus on the design and devel-
opment of some of the perceptual capabilities needed for such robots, as
essential to support autonomy, safety, and situational awareness in un-
structured construction sites. Particularly, we propose a novel segmen-
tation algorithm that allows the robot to work in highly unstructured
scenarios, as well as a mechanism for detecting and quantifying spatial
changes during the task. As far as HRI is concerned, a novel interaction
paradigm based on laser designation is proposed. Proposed concepts were
implemented and tested on a real, scaled-down, controlled mock-up that,
while simplifying some aspects of the task, is able to mimic some gen-
eral characteristics of a real demolition scenario. From lessons learned in
this controlled environment we point out some requirements and foreseen
issues in facing the complexity of a real demolition set-up.

1 Introduction

In the last few decades the adoption of large-scale machinery systems in the con-
struction industry is increased. The trend toward mechanization is expected to
continue in the next years, and thanks to the constant technological progress con-
struction robots [1] have become a tangible technical and economical possibility
gradually adopted by industries. Despite the mentioned trend, the construction
industry is still technologically behind other industries, such as manufacturing.
This technological gap can be attributed to some specificities of this sector: the
unstructured and cluttered nature of construction sites, the massive presence
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of human workers to deal with, the unique characteristic of construction prod-
ucts (as opposed to the mass production of identical objects), to name a few.
Although posing some issues, construction robotics also offers room for benefi-
cial improvements, and constitutes an intriguing and challenging research field.
As for demolition robots, some possible benefits arising from their employment
are: a) the possibility to increase work efficiency and prevent human errors;
b) the possibility to replace or assist humans in exhausting or hazardous tasks
(e.g. demolition of an unsafe building, operation in polluted areas, etc.); c) the
possibility to face the expected future shortfall in personnel available for the
construction labor pool.

For what concerns existing robotic platforms for construction-related tasks
[1], commercial platforms consist almost exclusively of general purpose remote-
controlled robots, with neither autonomy nor user assistance [2]. Among research
applications, some innovative tele-operated were proposed [3]. These works mainly
focus on mechanical design and control aspects, while autonomy and perceptual
issues are usually not investigated. As regards these aspects a lot has been stud-
ied with respect to earth-moving [4] where, however, both the interaction with
the environment and perceptual aspects are coarser if compared to indoor de-
molition, that presents challenging peculiar aspects on a different scale. In this
context research studies mainly focused on dismantling of interior facilities [5]
and decontamination of polluted environments [6]. These robots can take ad-
vantage of several elements (e.g. lamps, screws, or beams) present in a static,
structured environment. Limited tasks are executed in a semi-assisted mode (e.g.
attach to and scrap a beam, assist the positioning of a platform). As a conse-
quence perceptual and planning issues are quite simplified, and the situational
awareness of these robot is low, lacking a comprehensive modeling of the sur-
rounding environment. Human-robot interaction is also limited, and performed
by means of traditional interfaces (e.g. joysticks).

This preliminary work – developed in the context of an industrial partner-
ship – aims at providing a first contribution towards the development of a novel
generation of demolition robots, featuring enhanced autonomy, perceptual capa-
bilities, situational awareness and HRI paradigms. To the best of our knowledge
there are no demolition robots integrating such advanced features. The task of
autonomous indoor demolition itself was never directly investigated in litera-
ture, although posing several challenges: the interaction with the environment is
considerable and fine-grained, the environment is extremely dynamic, and very
few structured elements can be exploited by the robot. Moreover, the situational
awareness of the robot is fundamental in order to automatically accomplish the
task while satisfying safety and technical requirements. The above mentioned
characteristics highlight the importance of conferring perceptual capabilities to
demolition robots, that is one of the major directions of investigation of our
present and future work.

The main contributions of this work are as follows: a) we define a conceptual
architecture for the task of autonomous demolition (Sect. 2); b) we investigate the
perceptual capabilities needed to support autonomy and situational awareness



on a demolition site, presenting a novel approach to scene segmentation for the
demolition task as well as a method for quantifying deformations of the wall
(Sect. 4); c) we propose a novel HRI paradigm for construction machines based
on laser designation (Sect. 5); d) we present a simplified scaled-down mock-
up, that is used for the qualitative and quantitative experimental evaluation
(Sect. 6). The paper ends with discussions on scaling issues and conclusions in
Sect. 7 and 8. The video at http://youtu.be/Kq11lYJjHKI demonstrates the
autonomous execution of the task, some highlights on the perceptual system, as
well as the HRI paradigm based on laser designation.

2 Conceptual Framework

2.1 Objectives and Proposed Setup

We are interested in empowering construction robots with perceptual capabil-
ities, in order to achieve a full situational awareness that can be exploited
both for implementing fully autonomous systems or user-assistance in semi-
autonomous/tele-operated ones. The robot should be able to build (and provide
to human supervisors) rich representations of the working site, being fully aware
of surrounding obstacles and of the effects that its actions have on the target site.
For what concerns autonomy, we investigate the possibility of developing a robot
that is capable of executing a task (or part of it) in autonomous mode, with some
level of reasoning/planning and with constant feedback from the environment.

The task we take in consideration is the one of demolishing a wall, that can
present some obstacles: visible (e.g. tubes attached on its surface) or not visible
(e.g. walled-in tubes or cables). In Fig. 1 the proposed scenario is depicted. The
robot, consisting of a mobile base mounting a robotic arm, is equipped with a 3D
sensing device (e.g. laser scanner) that allows it to build a real-time 3D model
of the construction site. This model is used by the robot to plan its actions
and check how these actions modified the environment. Moreover, the sensing
system is used to build augmented representations to be returned to the remote
human supervisor. An intuitive, bi-directional, on-field interaction paradigm is
also provided, based on acoustic signals and laser-designation (Sect. 5). It is
important to note that in such a set-up the on-site operator can stand at a
safe distance since the robot exhibits considerable level of autonomy and the
demolition task does not rely on the operator’s perception and control skills.

2.2 The Demolition Task: Requirements and Assumptions

We assume the robot to be driven roughly in the proximity of the wall to be
demolished (in a tele-operated mode), then it must: a) autonomously recognize
the target, approach it and align at a given operative distance; b) autonomously
formulate a demolition plan that allows it to accomplish the task; c) execute the
demolition task, avoiding every identified obstacle (e.g. tubes, beams, pillars,
etc.); d) at each moment, be aware of the state of the surrounding environment,
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Fig. 1. Proposed scenario. a) The on-site scenario is depicted. The robotic system is
shown, together with an on-field supervisor. HRI by means of laser designation is also
shown (Sect. 5). b) The remote supervisor, receiving detailed visual feedback.

knowing which parts of the wall have been destroyed, which parts are still in-
tact, and the overall progress; e) at each moment, be ready to receive input
from human supervisors (e.g. accept new constraints). In what follows, the main
assumptions are the following: a) the space between the robot and the wall does
not present obstacles to be avoided while relocating the base (we do not address
the problem of collision avoidance in the approaching phase, for which there
exist solutions); b) the wall can be of any kind, it can be partially deformed or
demolished: the only assumption is that it presents, initially, a dominant pla-
nar component. The mock-up implementation presented in Sect. 6 follows these
general requirements and assumptions.

2.3 Autonomous Approach to the Demolition task

In Fig. 2 the proposed autonomous approach to the demolition task is outlined.
The task has been broken-down into sub-tasks, each one being the sequence
of demolition actions that the robot is able to perform without relocating its
base. The perceptual module offers a number of complex functions that allow
the robot to segment the 3D scene, recognize obstacles, understand the changes
that its actions determined on the surrounding environment (i.e. transformation
of the wall) and estimate the current task progress (Sect. 4). Before detailing the
perceptual system (that is the most advanced at the current state of the work),
we give some details on how the planning module can be organized with respect
to the task of autonomous demolition.

3 Hierarchical Planning

Planning is a crucial aspect for each autonomous robot. Particularly in the con-
text of autonomous demolitions it poses several research challenges, ranging from
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Fig. 2. Autonomous approach of the robot to the demolition task, as implemented in
Sect. 6. Some aspects are intentionally abstracted at this stage of the work. However,
just seeing this this simple setup in action suggested us interesting starting points. For
example, requiring the full completion of a sub-task is not, in some cases, the most
efficient solution, given that some parts of the current operative region can collapse
later on.

low-level force control to high-level reasoning: all aspects that would deserve an
in-depth dedicated work. For completeness, though, we consider useful to lay
down some general concepts about how the planning module can be organized
in the context of autonomous demolition. Doing so, we also give some details on
how different functions were implemented in our experimental set-up (Sect. 6).
We propose to hierarchically organize the planning module in three levels (Fig.
2). The high-level planner identifies a certain number of sub-tasks, and outputs
the positions that the robot’s base has to visit in order to perform each sub-task.
In our experiments this level has been based on Euclidean cluster extraction [7],
that partitions the wall into sub-regions. The medium-level planner is important
to define the demolition style of the robot, since it calculates, within each sub-
task, the contact points that the robotic arm will reach in order to execute the
sub-task. In our experimental setup this level simply computes contact points
that vertically span each sub-region, having care to check if a contact point is
valid before executing the reaching action. Finally the low-level planner is in
charge of computing collision-free trajectories for arm navigation. State of the
art algorithms for collision free arm navigation can be adopted to implement this
level: in our experimental setting the SBL planner (Single query Bi-directional
probabilistic road-map planner with Lazy collision checking) [8] was adopted.
This flexible organization of the planning module allows to decouple the differ-
ent functions: a wide variety of behaviors can arise simply modifying one of the



levels. For these reasons we suggest it as promising for the future design of an
autonomous demolition machine.

4 Model and Perception

4.1 Overview

A substantial part of this work involves the design and implementation of percep-
tual capabilities that allow the robot to process unstructured 3D scenes with any
or very few a priori assumptions. In this section we will discuss in greater detail
the perceptual challenges we faced. Particularly, we present in an incremental
manner several variants of a novel segmentation algorithm, leveraging low-level
perceptual building blocks in order achieve segmentation of unstructured 3D
scenes during a demolition task.

4.2 World Representation

To be able to autonomously execute the task in real-time with the required
situational awareness, the robot must hold a convenient representation of the
surrounding world. The chosen representation should be rich enough to allow the
robot to reason on and extract useful information from it. On the other hand,
the model of the world should be simple enough to be processed in real-time.
For these reasons, we propose the use of 3D sparse point clouds to represent the
surrounding environment: in our experimental setup input data from a 3D sensor
are thus heavily down-sampled, reducing the dimension of the point clouds from
approximately 300k points to less than 10k. Semantically identified objects (e.g.
obstacles to be avoided while demolishing) may be matched and approximated
by geometrical primitives, when possible. This can be convenient in order to
simplify the planning module in generating collision free trajectories. The final
result is a light 3D augmented reconstruction of the demolition site, that can be
efficiently processed.

4.3 Scene Segmentation: Motivations and Rationale

The goal of the segmentation module is to allow the robot to distinguish, in every
moment, between the wall and the obstacles to be avoided. Initially the wall is
mainly planar with obstacles lying on it (a scene that can be easily segmented),
but once the robot starts to demolish the wall can be, in general, excavated
and deformed in a complex fashion. State of the art techniques for point-cloud
segmentation usually search for planes [9][10], known shapes [11][12], geometric
primitives [13], or surfaces with homogeneous curvatures [14], but this does not
apply to our reference setup. In the general case we want to address we have to
segment a scene in which noisy, partial views of generic obstacles (hardly iden-
tifiable as geometric shapes before segmenting the scene) lie on an irregularly
shaped, partially deformed wall (Fig. 3a). After unsuccessful tests with state of



the art techniques, we designed and developed a new algorithm for segmenting
this kind of scenes in the context of a demolition setting, leveraging low level pre-
existing perceptual building blocks. A peculiarity of the demolition task is that
the world is initially quite structured, and becomes more and more unstructured
as the demolition proceeds. We tried to exploit this peculiarity to our benefit,
basing the segmentation algorithm on this simple observation. The idea behind
our proposed approach is to propagate an easy-to-acquire initial knowledge to
subsequent frames, where this knowledge would be much more difficult to ac-
quire directly. We define the concept of segmentation plane, being the plane that
spatially separates the foreground obstacles from the background wall, allowing
to segment a scene. At the beginning of the task we assume that the intact wall
presents a dominant planar component, with obstacles attached to it. The first
segmentation plane is thus easily calculated by mean of RANSAC-based planar
segmentation [15] (RANdom SAmple Consensus). A RANSAC-based approach
is also used to approximate obstacles with geometric primitives (e.g. cylinders).
When the wall gets excavated, we can’t rely in general on planar matching to
segment the scene. Moreover, the robot will, in general, move while executing the
task, so we can’t rely on the initial segmentation to directly segment subsequent
scenes. What our algorithm does is to estimate the transformation that occurred
between a segmented scene and a new scene, and use it to transform accordingly
the previously known segmentation plane in the one that allows to segment the
new scene. We now give some more details on the proposed approach.

b) c)a)

Fig. 3. (Best viewed in colors) a) Non-planar scene being segmented by our algorithm.
Points belonging to recognized obstacles are marked in red. b) Planar scene being seg-
mented by our algorithm. Obstacle matching with geometric primitives is also shown.
c) Unrealistic rotation introduced by SAC-IA, as discussed in Sect. 4.4.

4.4 Variants of the Segmentation Algorithm: Changing the Method
for the Initial Alignment

Once described the rationale behind our segmentation algorithm, we now dis-
cuss how it was designed in terms of lower-level perceptual building blocks. Our



segmentation algorithm is, in fact, an high-level algorithm that leverages prim-
itive functions (detailed in Fig. 4) in order to achieve scene segmentation in a
dynamic and general demolition setting, in which state of the art algorithms for
point clouds segmentation are not applicable. To better understand the following
explanation, the reader may refer to Fig. 4.

As already mentioned, in order to transform a previously computed segmen-
tation plane into a new scene, we need to estimate the transformation that aligns
two subsequent scenes, i.e. we need 3D registration. Registration is performed
in two steps: a) a rough initial alignment between the two scenes is calculated
(two possibilities were considered: the features-based SAC-IA [16], and a method
based on odometry, that we call odometry-IA – later described); b) ICP (Iter-
ative Closest Point) [17] refinement. Algorithm’s parameters are tuned so that
the whole algorithm is executed in real-time (meaning that no noticeable wait
is introduced with respect to the timing of a demolition task). By changing the
underlying building blocks used for registration and improving the logic of our
segmentation algorithm, several versions of the algorithm are developed. Start-
ing from the basic intuition given in the previous paragraph, we now detail those
variants (compared in Sect. 6) in an incremental manner.

The most general version of the algorithm (naive SAC-IA based algorithm)
exploits the SAC-IA algorithm for implementing a features based initial align-
ment. After testing some of the most used features for 3D point clouds, we chose
NARF (Normal Aligned Radial Feature) features [18], since they resulted faster
than other descriptors preserving, at the same time, good registration perfor-
mances. This variant of the algorithm can estimate an initial alignment between
two scenes even if complex motion occurred between the two, thus being very
general. However, some problems can arise when the number of iterations of the
SAC-IA sub-module is kept low in order to achieve near real-time performances.
The algorithm can sometimes fall in a local minima, providing a bad initial
registration (e.g. specular, flipped, rotated) that the ICP module is not able to
compensate for. Recovering from such errors can be difficult. Moreover, SAC-IA
uncertainties can occur in every possible dimension, since the estimated trans-
formation is not bounded in any way to fit realistic motions of the robot (Fig. 3).
Thus, the algorithm is not taking advantage of some a priori known constraints,
and this can result in unnecessary uncertainties or computation. We then de-
signed an alternative algorithm (naive odometry-IA based algorithm) in which
the initial alignment between two subsequent scenes is achieved by means of
odometry information, i.e. we directly estimate the transformation matrix align-
ing two scenes from odometry information being measured between the two. The
estimated transformation is more constrained than in the features-based case.
Moreover odometry uncertainties are limited, since movements are short and
simple in the demolition phase (consisting of short translations parallel to the
wall), and can thus be compensated by the subsequent ICP refinement stage.
This solution resulted in benefits to the overall segmentation algorithm, in terms
of complexity (less parameters to be tuned), execution time (less computation
needed), robustness (less uncertainties).



4.5 Variants of the Segmentation Algorithm: Feedback Mechanism
and Refined Version

In the above described naive variants of our segmentation algorithm we regis-
tered pairs of subsequent frames, transforming accordingly the previously known
segmentation plane to segment a new scene (Fig. 4). Without appropriate coun-
termeasures, registration errors tend to accumulate, and the algorithm will even-
tually fail if the number of registrations (i.e. the number of robot’s relocations)
needed to perform the task is considerable. For this reason, we introduced a
feedback mechanism, that allows to reset the registration error every few frames.
The feedback mechanism is based on the only invariant elements presents in the
scene, i.e. obstacles. When the robot is able to identify a sufficient number of
obstacles, it estimates the plane on which they lie on (obstacles plane): it will
then use that plane for the next transformation process instead of a plane that
already accumulated registration errors.

A subsequent version of the algorithm (that we call refined version) works
without the need of a feedback, thus resulting in a more general and stable
algorithm (Fig. 4). The rationale is simple: instead of registering each snapshot
with the previous one (possibly relying on multi-step transformations to estimate
a segmentation plane when feedback lacks for some time), we register each frame
with the first one in which, being the wall still mainly planar, we are able to
robustly estimate a segmentation plane using RANSAC based planar matching
(the basic assumption is that there are some invariant features that allow to
register the two scenes even in presence of modifications of the wall: invariant
obstacles can be sufficient for that to hold). This way we always work with a
segmentation plane that is a one-step transformation of the first estimated plane,
a situation that is only the best case in the naive variants (i.e. the case in which
they find a feedback in each snapshot). With this approach the need of a robust
obstacle matching algorithm (that was crucial in the previous version) is also
relaxed, since obstacles matching does not affect the capability to segment the
scene. The refined approach has been evaluated with respect to the odometry-IA
registration method. All the three variants of the segmentation algorithm will
be evaluated in Sect. 6.

4.6 Changes Detection and Progress Estimation

In order to support autonomy and situational awareness, we wanted the robot
to be aware of the modifications that its actions imply on the surrounding en-
vironment in terms of changes in the spatial configuration of the wall. This is
important also in order to make the robot aware of the task progress, a key
requirement in order to support autonomy. We thus implemented a perceptual
module called superficial diff (where ”diff” stands for difference), since it is able
to compare two point clouds (before and after a demolition move) and return
the spatial difference among them. This way we are able to identify precisely
what regions of the wall were demolished after each move (Fig. 5). The superfi-
cial diff is based on the comparison between binary coded octree data structure
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Fig. 4. a) Naive, feedback-based approaches to scene segmentation. Squared brackets
denote possible alternatives or additional stages. b) Refined segmentation pipeline, here
based on odometry-IA.

constructed from the two point clouds (pre- and post-move) to be compared
(see [19] for a similar set-up). By recursively comparing the octrees, the spatial
changes – represented by differences in voxel configuration – are identified. Given
the pre-move and the post-move clouds, we identify voxels that were occupied
in the pre-move cloud but are no longer present in the post-move cloud, thus
belonging to a region of the wall that has been demolished. A filtering stage
is then applied in order to remove spurious points due to sensor noise. Once
the difference surface is identified, it is possible to calculate its area exploiting
the surface discretization offered by the octrees (thus supporting autonomous
task progress estimation). Pushing beyond this concept, we also implemented
a volumetric diff in order to cope with the general case in which the wall gets
excavated. The volumetric diff was efficiently achieved with a XOR comparison
of the binary octrees: this way we obtain all the points belonging to the two
surfaces that enclose the excavated volume. We can then calculate the convex
(or concave) hull on the resulting point cloud, so as to visualize the excavated
volume and be able to numerically estimate its volume (Fig. 6). A concave hull
is, in general, more accurate in representing the excavated volume, but the nu-
merical calculation of its volume is not trivial. The convex hull, on the contrary,
is in general less precise, but its volume can be computed more easily.

5 Human-Robot Interaction

Given the safety critical nature of the application, in a real demolition scenario
some forms of human supervision would be certainly required, no matter the
level of autonomy and reliability of a demolition machine. For this reason we
also designed and implemented an intuitive, precise, on-site Human-Robot Inter-
action (HRI) paradigm. While traditional interfaces for construction machines
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are based joysticks, levers and buttons, the proposed paradigm is based on laser
designation (Fig. 1, 7). As a case study, we allowed the supervisor to designate
additional obstacles to be avoided during the demolition task, such as walled-in
pipes that the robot is not able to identify autonomously. This is done by directly
projecting a laser pointer (tracked by the robot) onto the demolition target. Cur-
rently the interaction is based on sequences of way-points that the supervisor
specifies by pointing a certain spot of the wall for prolonged time (2-3 seconds):
each recognized way-point is acknowledged by the robot with an acoustic feed-
back. By means of way-points the supervisor is able to delineate special regions
of the wall or walled-in obstacles. Represented by geometric primitives, these
additional constraints are integrated in the robot’s representation of the world,
and considered by the planning architecture in the same way as obstacles that
are autonomously recognized. This paradigm solves very effectively the challeng-
ing task of avoiding walled-in obstacles and defining additional constraints. This
flexible HRI paradigm based on laser designation can be used also for differ-
ent purposes, e.g. to show the path that the robot should follow to reach the
proximity of the target, or to provide demonstrations that will affect the de-
molition style of the robot in a programming by demonstration/apprenticeship
learning scenario (a direction in which we also conducted some studies, here not
detailed).
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Fig. 7. HRI paradigm based on laser designation: a) Example setup. b) 3D view of the
back of the wall, with a walled-in designated tube represented as geometric primitives
(green dots are the recognized way-points). c) The laser pointer used for the experiment.
d) Example of augmented representation: a front view showing real objects together
with walled-in designated obstacles.

6 Experimental Work

6.1 Experimental Setup

In order to test the validity of the proposed concepts and algorithms we built a
scaled-down representative scenario for a demolition task. It consists of a wooden
brick wall that the robot is able to demolish by simply pushing the bricks with
its manipulator (Fig. 8). Some cylindrical tubes were attached onto the surface
of the wall in order to mimic obstacles that could be found in a real scenario.
While the mock-up wall may seem quite oversimplified with respect to a real
demolition site (e.g. it is planar and not able to mimic the dynamics of an exca-
vation), it is a good starting point to demonstrate the overall principles of the
proposed scenario. What is important is that key algorithms (e.g. the segmen-
tation algorithms) do not leverage simplified aspects of the mock-up (e.g. the
planar configuration of the wall - Fig. 3). In order to study subsequent aspects
of the demolition task, we plan to build a more realistic mock-up. The adopted
robotic platform is the KUKA youBot, a mobile manipulator for research and
education. The robot features an omnidirectional base and a 5-DOF manipula-
tor. The platform has been equipped with two Microsoft Kinect (one is used for
navigation, the other for scene reconstruction). Processing occurs on a dedicated
external laptop (ASUS N53S, featuring an Intel Core-i7 2630QM 2.0 GHz, 6GB
DDR3 RAM, Nvidia GeForce Optimus 540M 2GB for graphics), connected via
EtherCAT to the robot. The robot runs the Robot Operative System (ROS) [20],
and the whole application was organized in such a framework as several new
ROS packages. Perceptual processing is based on the Point Clouds Library [21].

6.2 Evaluation of the Segmentation Algorithm: Methodology

In addition to the qualitative evaluation of the overall system, in this section
we report the quantitative evaluation of the main variants of the proposed seg-



Fig. 8. The mobile robotic platform facing the wooden brick wall in a partially-
demolished state. Each brick is 7 x 4.5 x 3.5 cm (width, height and depth). The wall
is 70cm x 42cm being thus composed of 90 bricks. Some cylindrical obstacles are also
visible.

mentation algorithm. Other aspects of the system will be evaluated in future
work.

In order to quantitatively evaluate the variants of the segmentation algorithm
presented in Sect. 4 we needed a ground truth. In order to easily obtain it,
we allowed the ground truth algorithm (RANSAC based planar matching) to
leverage a simplified aspect of our mock-up, e.g. the planar configuration of the
wall (see Fig. 8). It is important to note that the ground truth algorithm only
works in presence of a dominant planar component throughout the task, a very
simplistic assumption that is not always satisfied in a real scenario (e.g. when
the wall gets excavated, Fig. 3). Our segmentation algorithm, instead, does not
exploit in any way the planar configuration of the mock-up wall, thus working in
the more general conditions of a real scenario (detailed in Sect. 4, see also Fig.
3). The evaluation has been performed using a data set composed of 30 point
cloud snapshots acquired from a Microsoft Kinect camera during a demolition
task. To compare the algorithms, in addition to the mean execution time and the
number of errors, we define two more metrics: a) displacement of the estimated
segmentation plane, with respect to the plane computed by the ground truth
algorithm; b) segmentation index, a measure of the capability of the estimated
segmentation plane to classify points as belonging to the wall or to the obstacles.
The segmentation index is thus the misclassification rate, with respect to the
classification operated by the ground truth algorithm (the lower, the better).
In addition to the aforementioned metrics, we performed visual inspection to
evaluate the quality of each segmentation, in order to check if every obstacle
was correctly matched with geometric primitives or some error occurred (e.g.
visible obstacle not detected, wrong parts of the scene detected as obstacle).



6.3 Naive SAC-IA Based vs Naive Odometry-IA Based

This test compares the two naive variants of the segmentation algorithm, dif-
fering in the technique adopted for the initial alignment of two scenes to be
registered (other stages of the two algorithms are identical). Table 1 summarizes
the comparison. The first aspect to note is that both algorithms were able to
correctly segment all the presented scenes, thus proving the effectiveness of the
presented approaches. No errors occurred, every visible obstacle was correctly
recognized and fitted with geometric primitives. However, the odometry-based
version performed better than the SAC-IA-based in our setup. With the same
parameters for the ICP refinement, the first algorithm is, on average, more than
a second faster, the estimated segmentation plane is slightly more accurate,
as the resulting segmentation. We also report that in four cases out of thirty
SAC-IA failed in estimating an initial alignment: although not happening in our
experiments (extra work carried out by ICP was able to put right), this could
in general produce segmentation errors when movements are broader. We can
conclude that when movements between two scenes are simple - as in a typical
indoor demolition setup - and odometry is available, it is convenient to exploit
this information, achieving good results with a simpler pipeline.

6.4 Naive Odometry-IA Based vs Refined Odometry-IA Based

We now compare the naive (both with and without enabled feedback) and the re-
fined odometry-IA based algorithms (Table 1). The refined algorithm is slightly
slower than the naive: this is due to the fact that while the naive algorithms will
often register partial views of the wall (that are composed by a reduced number
of points), in the refined version one of the two clouds (the first) will always be
complete, thus composed of a greater number of points. Anyway, the difference
is not noticeable on the time-scale of a demolition task. The mean plane dis-
placement and segmentation index suggest that the naive algorithm eventually
encounters problems when the feedback lacks for prolonged time: in fact we also
report four errors out of thirty segmentations. The refined algorithm, instead,
performs very well without any feedback, thus proving its effectiveness. More-
over, it also performs better than the naive algorithm with enabled feedback.
To better illustrate what happens, Fig. 9 compares the plane displacement and
the segmentation index of the two algorithms over the data set. The refined
algorithm maintains good performances on all the data set, while the naive ver-
sion (with disabled feedback) gets worse and worse because of registration errors
adding up.

7 Discussion and Scaling Issues

The current mock-up allowed us to perform experiments in a scaled-down, con-
trolled setup, without neither the practical problems of a more realistic set-up
(availability of a full-sized robotized platform, required facilities, safety concerns,



Table 1. Performance comparison of the main variants of the segmentation algorithm

Mean exe-
cution time
(sec)

Mean plane
displacement
(deg)

Mean seg-
mentation
index (abs)

Errors

SAC-IA 2.66 1.12 ± 0.87 1.87 ± 4.72 0/30

Odom-IA
(naive)

1.27 0.98 ± 0.73 0.41 ± 0.97 0/30

Odom-IA
(naive, no
feedback)

1.32 2.29 ± 1.09 13.67 ± 14.36 4/30

Odom-IA
(refined)

1.51 0.55 ± 0.25 0.008 ± 0.13 0/30
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Fig. 9. Performance comparison between refined (dashed) and naive (solid) variants
of the odometry-IA based segmentation algorithm (both without feedback). The graph
of the segmentation index was truncated at frame number 12 in order to improve
readability.

etc.), nor the oversimplifications entailed by simulated environments (that are
often adopted in related literature). By designing algorithms that do not leverage
simplistic aspects of the mock-up, we were able to test the validity of proposed
concepts and algorithms (especially the perceptual ones) in a controlled envi-
ronment. Although the mock-up may seem oversimplified (and it certainly is
in some aspects), we found it particularly useful for a preliminary study of the
demolition task. We were able to isolate the aspects of the task that we wanted
to investigate first, while simplifying those to be later investigated. As for the
simplified aspects of the mock-up (pointing out the necessity of a more sophis-
ticated mock-up, for future work), one of the main current limitations lies in
the dynamics of the demolition: the wooden brick wall can only be demolished
impulsively and tends to fall apart in an unrealistic manner. This prevents from
investigating more sophisticated planning and reasoning strategies, embedding
a physical model of the world. Another important limitation is the impossibil-
ity to model volumetric aspects of the demolition task (the volumetric diff was



tested on a separate static mock-up). Those aspects are certainly important and
should be modeled by the mock-up, posing several challenges related to low-level
planning and control strategies. As for scaling issues, proposed perceptual algo-
rithms were designed to work in much more general scenarios than the simple
mock-up used for experiments, and resulted in fact successful also when tested
in more general conditions (see e.g. Fig. 3). The main problem was, in that
case, how to achieve a ground truth to test them against. Other problems that
should be addressed when scaling up the complexity of the environment are the
ability to deal with possibly uneven terrains (although this is not usually the
case in indoor scenarios), and to cope with vibrations, dust and difficult light
conditions. As for vibrations, we had to solve problems related to oscillations
of the 3D camera during relocations (simple filtering techniques were sufficient
to cope with the problem in our set-up). Another problem we noticed is arm’s
occlusion: when designing a real demolition robot, several alternatives should be
considered (e.g. a wisely mounted additional camera – on the arm itself, on a
little auxiliary arm, on a lateral fixed support etc.). These examples show that a
real mock-up, although simplified in some aspects, forces to deal with problems
that would have been overlooked in a simulated environment.

8 Conclusions and Future Work

In this work we moved the first steps toward the design and development of
novel machines for demolition task, featuring enhanced autonomy, perceptual
capabilities, situational awareness, HRI paradigms. A reference set-up has been
proposed, as well as a conceptual framework to cope with this task. We then
focused on some of the perceptual features that such robots should offer in order
to provide high levels of autonomy, safety, and situational awareness. Particu-
larly, consistent efforts were put into the design, development, and evaluation of
a novel segmentation algorithm, able to operate in unstructured environments
under very general conditions and with minimum a priori assumptions. As for
perceptual issues, we also proposed a method for identifying and quantifying spa-
tial deformations occurring during the task. As regards HRI, we proposed a novel
paradigm for construction machines based on laser-designation. As a first step
toward tackling the complexity of a real demolition scenario, we implemented
a first, scaled-down, representative mock-up, that allowed us to perform experi-
ments in a controlled environment. With respect to this point, it is to be noted
that our algorithmic contributions do not leverage simplifications of the set-up.
The lesson learned from this first study will be certainly valuable in scaling up
toward the complexity of a real demolition scenario. Future work will focus on
the design of a more sophisticated test-bed (e.g. allowing excavation), and on
further investigating planning, actuation, and HRI issues for the demolition set-
ting. The planning module, in particular, offers several interesting directions of
research, at every level of the proposed hierarchy (from low-level force control to
high-level reasoning, such as the capability to understand special situations, ask
for human intervention, etc.). We also plan to port developed concepts and algo-



rithms on a full-sized commercial demolition machine, currently being robotized
at the PERCRO laboratory.
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