
Behavior Switching Using Reservoir Computing for a Soft Robotic Arm

Tao Li, Kohei Nakajima, Matteo Cianchetti, Cecilia Laschi, and Rolf Pfeifer

Abstract— Soft robots have significant advantages over tra-
ditional robots made of rigid materials. However, controlling
this type of robot by conventional approaches is difficult.
Reservoir computing has been demonstrated to be an effective
approach for achieving rapid learning in benchmark tasks and
conventional robots. In this study, we investigated the feasibility
and capacity of the reservoir computing approach to embedding
and switching between multiple behaviors in a on-line manner
in a soft robotic arm. The result shows that this approach can
successfully achieve this task.

I. INTRODUCTION

Soft robotics represents one of the new trends and chal-

lenges in biologically inspired robots[1]. Traditionally, robots

are made of rigid materials and resemble the articulated

structure of vertebrates. Motivated by the fact that soft

materials are ubiquitous in living creatures, new types of

robots that adopt elastic elements in their construction have

been developed in recent years [2]. Soft robots have potential

advantages over traditional rigid ones in terms of morpholog-

ical flexibility and interaction safety. Soft robots’ flexibility

means they could be used as, for example, search and rescue

robots, which could crawl through rubble and squeeze into

small spaces, and minimal-invasive operation devices. In this

study, we take the extreme of softness and consider soft

robots whose body or major functioning parts are constructed

exclusively of elastic elements. Some encouraging instances

of these extremely soft robots have been developed in the last

few years [3], [4], [5]. However, their functions are mainly

achieved by smart structure design while the controllers are

either not addressed or use traditional methods. There are

enormous challenges in controlling soft robots since soft

materials exhibit highly complex and time-varying dynamics

under actuation and the expansion of the applied forces is

hard to predict in the structure [6], just to name several.

Facing these difficulties, one could envision that traditional

robot control methods based on rigid kinematics and dynam-

ics are hard to apply to soft robots in general. There is still

no efficient method tailored for controlling soft robots. In

this study, we focus on achieving behavior switching of soft

robots.

The octopus is a good source of inspiration for learning a

control strategy for soft robots. As an inspiration for soft

robot construction, octopus arms are extremely compliant

* This work is supported by the European Commission in the ICT-FET
OCTOPUS Integrating Project (EU project FP7-231608).

T. Li, K. Nakajima, and R. Pfeifer are with the Artificial Intelligence
Laboratory, Department of Informatics, University of Zurich, 8050 Zurich,
Switzerland, email: taoli@ifi.uzh.ch

M. Cianchetti and C. Laschi are with the Advanced Robotics Technology
and Systems Laboratory, Scuola Superiore Sant’Anna, 56100 Pisa, Italy.

and exhibit complex dynamics. However, the octopus con-

trols its soft arms flexibly and precisely to perform various

behaviors [7], such as reaching [8], [9] for an object, catching

it, and bringing it [10] to its mouth in a varying and often

uncertain environment. Our previous study on an octopus-

inspired soft robots control scheme proposed that timing, the

time to initial motions, is an important factor in controlling

soft robots [11], [12], [13], [14], [15]. To implement timing

in a robot controller, recurrent neural networks (RNNs)

are normally used. However, traditional supervised training

methods for RNNs use gradient descent techniques and are

subject to local minima, slow convergence, instability, and

other limitations [16]. Reservoir computing [16], [17], [18]

is a new way to construct and train the RNNs. In this

approach, only the connection weights from the reservoir to

the output nodes are trained; thus, many fast linear regression

algorithms can be used. This characteristic makes it realistic

to use reservoir computing in physical robotic platforms.

The main work of this study is as follows: (1) evaluate

reservoir computing approach by using different type of

sensors with distinct noise characteristic; (2) demonstrate

that reservoir computing approach can be used to embed and

switch among multiple sequential behaviors in a physical soft

robotic platform; (3) and analyze the stability of reservoir to

sensor noises. In this paper, we used the reservoir architecture

called echo state network (ESN).

II. EXPERIMENT SETTING

An experimental platform equipped with a soft robotic arm

was built to evaluate the interaction among the controller,

the soft body, and the environment. The platform setup, data

acquisition, and experimental procedure are presented in this

section.

A. Platform setup

The platform setup is shown in Fig. 1(a). It consists of

a soft robotic arm, its actuation, sensing, control systems,

and a water tank containing fresh water as the underwa-

ter environment. The soft robotic arm, which mimics the

morphology of an octopus arm, is based on the prototype

proposed in [19]. It is made of commercially available

silicone rubber (ECOFLEXTM 00-30), which has similar

density and Young’s modulus as the octopus arm [19]. The

total length of the cone-shaped soft arm is 310 mm, with

an actuated part of 80 mm, measured from the base. The

rest 230 mm is passively driven. The actuated part has two

nonextensible fishing cables embedded symmetrically to the

center of the arm, as shown by the dashed lines in Fig. 1(b).

Using two servo motors (DynamixelTM AX-12A+), the soft

(b)

(c)

310 mm

80 mm(a)

(i)

(ii) (iii) (iv)

(v)

Fig. 1. (a) The experimental platform. It consists of a laptop PC (i), two servo motors (ii), one camera (iii), two force sensors (iv), and a soft robotic arm
(v). (b) The soft robotic arm used in this paper. Dashed lines represent the cables embedded in the arm. (c) The robotic arm is made of silicone rubber
and thus can be bent at any point and to any direction.

arm is driven by pulling the two cables embedded in the

actuated part of the arm. The cable tensions are measured by

two force sensors (KD24S from ME-Meβ system GmbH).

The force sensor signals are amplified and sent to a PC

serial port through an ArduinoTM UNO board, whose ADC

outputs integer values between 0 and 1023, which correspond

linearly to forces of 0 to 10 N. Thus, the unit of force sensor

data is about 0.01 N. The force unit is designated by [POS] in

this paper for clarity,. The servo motor positions are also sent

to the PC as sensory inputs by integer values from 0 to 1023,

which correspond linearly to angles of 0 to 300 degrees. The

unit of position sensors is designated by [FCE], which is

about 0.29 degrees. A camera (LogitechTM Webcame Pro

9000) is placed on the top of the platform to record the the

soft silicone arm motion.

A Java program running on a laptop PC receives the

sensor signals explained above and sends out the motor

commands to the servo motors. The unit of timestep, in

this paper, is one sensing and actuation loop of the control

program. Reservoir is prepared in the program to generate

sensory-motor loop. For the sensor signals (S), it allows to

take either the force sensor readings or the servo motor

positions. The sensor selection depends on experimental

setting explained below. We adopt three variables for the

motor commands, which are the moving direction for each

motor and their common speed. The overall settings of the

reservoir and experimental procedures are explained in detail

in the following sections.

The servo motor position, designated by integers between

0 and 1023, as described above, is adjusted according to

the motor command (direction) and speed. The servo motor

speed (v) is the motor position change per timestep and thus

has the unit of [POS/t]. It can be set from 10 [POS/t] to 40

[POS/t] considering the limitation of the platform - a speed

slower than 10 [POS/t] cannot exhibit the dynamics of the

soft arm, while a speed faster than 40 [POS/t] would cause

the servo motor to overheat. In this paper, motor commands

are set as binary values, M = {+1,−1}. If the command

gives +1 or −1, the motor is controlled to move from the

current position toward the maximum position (Lmax) or the

relaxed position (Lrelax) with the speed v, respectively. For

each motor, Lmax was determined so as not to cause the tip

of the arm to touch the walls of the water tank during its

movement. Note that the motor command does not always

take the roller position to Lmax or Lrelax, but rather decides

the motor moving direction for each timestep. Also, if the

command gives +1 or −1 when the current position is

in Lmax or Lrelax, respectively, then the position will stay

unchanged for one timestep.

B. Reservoir Computing

1) Sensory - motor mapping: As we explained above, we

prepared two types of sensors for the reservoir. The first type

are force sensors (S f) and the second are position sensors

(Sp). Since the sensors measures two motors (cables), we

describe them as S1 (S f 1 or Sp1) and S2 (S f 2 or Sp2).

Meanwhile, since we aim to embed multiple behaviors into

the network, we adopt control signals (C) as a input to

the reservoir. Here, C is defined as a random real value

in [0.0 1.0]. For example, if we want to control three

behaviors, then we divide the range [0.0 1.0] equally and

assign a control signal as (0.33, 0.66, 1.0) for each behavior.

The correspondence between the assigned values and the

behaviors is randomly determined and fixed in the training

phase, as explained below. As a summary, we have S1, S2,

and C as the input to the reservoir (Fig.2). For the outputs of

the reservoir, we adopt previous explained motor commands

(M) and speed (v). Since the two cables are controlled

independently, there are two motor commands - M1 and

M2. As a summary, there are three reservoir outputs in total

(Fig.2).
2) Network architecture - Echo State Network (ESN):

Fig.2 shows the ESN used in this study. It consists of four

reservoir

(random connections)

outputsinputs
readout

M1

M2

v

S1

S2

control

signals

(C)

Win

W
Wreservoir, out

Winput, out

Fig. 2. Network architecture used in this paper. There are three input
nodes (sensory inputs (S1, S2), and a control signal (C)), 200 reservoir
neurons, and three output nodes (motor rotation directions (M1, M2), and
motor speed (v)). All the connections are fully connected but not shown for
simplicity. See text for details.

types of connection weights. The first type is connection

weights from input nodes to the reservoir neurons (Win, size

200 × 3). The second is connection weights that connect

the reservoir neurons to each other (W , size 200 × 200).

The third are direct connection from the input nodes to the

output nodes (Winput,out , size 3×3). The last are connection

weights from the reservoir neurons to the output nodes (

Wreservoir,out , size 3×200). We use 200 neurons to construct

the reservoir throughout this paper. Connection weights Win

are random real value from [0.0 1.0] and fixed throughout all

the experiments. For the setting of W , we used the method

introduced in [16], which can be summarized as the follow-

ing procedure: (a). Randomly generate an internal weight

matrix (W ′). (b). Normalize W ′ to a matrix W ′′ with unit

spectral radius by applying W ′′ =W ′/|λmax|, where |λmax| is

the spectral radius of W ′. (c) Scale W ′′ to W = αW ′′, where

α < 1, whereby W has a spectral radius of α . α is set to 0.9,

which is determined heuristically in this study. Wreservoir,out

and Winput,out are the weights that will be adapted in the

training phase. Wout is used to represent the concatenation

of the two output weights matrix, Wreservoir,out and Winput,out .

Wout := Wreservoir,out⊕ Winput,out . We define input sequence in

n timesteps as u(n) = (u1(n),u2(n),u3(n)), where u1(n) =
S1(n), u2(n) = S2(n), and u3(n) = C(n). The state of the

neurons of the reservoir is x(n) = (x1(n),x2(n),,x200(n)).
The concatenation of the input sequence and neuron states

is represented by o(n) := x(n)⊕ u(n). The output of the

network is y(n)= (y1(n),y2(n),y3(n)), where y1(n)=M1(n),
y2(n) = M2(n), and y3(n) = v(n). Then, the updating rules

of the connection weights are defined as:

xT (n+1) = g(Win ∗uT (n+1)+W ∗ xT (n)), (1)

yT (n+1) =Wreservoir,out ∗ xT (n+1)+Winput,out ∗uT (n+1)
(2)

=Wout ∗oT (n+1), (3)

g(x) = tanh(x). (4)

(Note that, we actually applied g(x) to calculate y(n+ 1)
because they are binary values.). Next, in order to deter-

mine Wout , we need to decide a teacher output (d(n) =
(d1(n),d2(n),d3(n))). As we will explain in the following

section, d(n) is determined according to behaviors we re-

quire. The internal states, o(n) for n = tstart , tstart + 1,,
tstart + ttrain are collected into the rows of a state-collecting

matrix X of size ttrain×(200+3), where tstart is the timestep

to start collecting the data and ttrain are the timesteps used

for the training data. At the same time, the teacher outputs

d(n) are collected into the rows of a matrix T of size

ttrain ×3. Thus, the desired weights are directly obtained by

multiplying the pseudoinverse of X (X∗) with T :

Wout = X∗T. (5)

3) Experiment procedure and network training: The aim

of this study is to evaluate whether the reservoir computing

approach can be reliably applied to the physical soft robotic

platform. When we try to embed control inspired by the

octopus, we have to embed and combine various types of

sequential control. As a preliminary exploration, we design

the motor outputs for simple oscillatory behaviors of the

robotic arm. By regulating the control signal, we aim to

switch those behaviors in an on-line manner. Furthermore,

we aim to explore the relation of the types of sensor (that

is, the precise position sensors and noisy force sensors) to

the reservoir performance. Since the position sensors take

the values of servo motor position, they will not be affected

by the dynamics of the soft robotic arm. However, the force

sensors are expected to be strongly affected by the body

dynamics of the soft arm, since they detect the forces on

the cables embedded in the arm. We also try to evaluate the

robustness to the noise of the reservoir.

The oscillatory behavior of the arm is achieved by alter-

natively adjusting the forces on the two cables embedded

in the soft robotic arm. Initially, one cable (cable 1) is in

its relaxed state and the other (cable 2) is in its maximum.

Then, the motor driving cable 1 starts increasing the tension

on the cable at a constant speed until the cable reaches

the predefined maximum position, while cable 2 is driven

moving toward the relaxation position. Then, cable 1, which

is at its maximum position, starts to go back to the relaxed

position, while cable 2 goes to its predefined maximum

position. This alternative adjustment continues until a prede-

fined timestep. There are three behaviors defined by different

speeds. The three behaviors used in the experiment have

speeds of 10 [POS/t] (behavior C), 18 [POS/t] (behavior B),

and 26 [POS/t] (behavior A), corresponding to control signal

of 1.0, 0.33, and 0.66, respectively. For each of the three

behaviors defined in the experiment, the speed is the same

for both cables and both directions.

To achieve the behavior switching, three phases are used:

teaching, learning, and evaluating. In the teaching phase,

the teaching data to be used to train the reservoir readout

is generated for 8000 timesteps. A random control signal

is generated at the beginning of every 200 timesteps, and

the soft robotic arm oscillates at the corresponding speed.

Behavior A

Behavior C

Fig. 3. Typical examples of the soft robotic arm behavior. The upper line shows behavior A, the lower line shows behavior C. Time evolves from left to
right. We can see that the amplitude of the oscillatory behavior in behavior A is larger than in behavior C.

We record the control signal and the corresponding motor

positions and forces. Then we use the teaching data generated

in the teaching phase to train the linear reservoir readout

connection weights. The first 200 timesteps teaching data is

used to eliminate the effects of the arbitrary starting state and

discarded as standard practice. In addition, a random noise

is added to the sensor data to enhance the the reservoir’s

stability. The noise amplitude is determined by considering

the sensor output range during the experiment. It is with

an amplitude of 26 [POS] for the position sensors and 30

[FCE] for the force sensors. After training, the reservoir

is implemented and evaluated to switch among the three

behaviors for 5000 timesteps. First, we activate the arm

using the same procedure as the teaching phase for 200

timesteps. Then, the reservoir takes a random control signal

and generates the corresponding behavior. The generated

positions M(n) and the desired positions dm(n) for both

cables at each timestep are recorded.

To evaluate whether the reservoir dynamics is necessary

to generate the desired behavior switching, we also tested

the setting without reservoir. This is essentially performed

by setting the number of reservoir nodes N = 0. Therefore,

only the connection weight from the input nodes to the

output nodes are adapted during the training phase. Fur-

ther experiments are carried out to analyze the robustness

of the reservoir to position sensor noise. Position sensors

are used in this experiment. Firstly, a set of training data

are collected and used in all the training procedures in

this experiment. In the learning phase, we use the same

procedure. In the evaluation phase, 10 different levels of

noise are added to the position sensor data. The 10 levels

of random noise are set from 0 to 90 [POS] (the range

of position sensor data is 185 [POS]) with an interval of

10 [POS]. Each noise level is tested 5 times. Error is

evaluated by using the root mean square (RMS) of the errors

in each timestep: EM =
√

1
ttrain

∑
tstart+ttrain
n=tstart

(dM(n)−M(n))2,

Ev =
√

1
ttrain

∑
tstart+ttrain
n=tstart

(dv(n)− v(n))2.

III. RESULTS

In this section, the behavior of the soft robotic arm is

observed first. Then, the performance of the task to switch

among three behaviors by the control signal is evaluated. We

compare each case by first adopting the position sensors and

then using the force sensors as input. Next, the performance

of the controller without reservoir is evaluated to check the

importance of the reservoir. Last, the stability of the reservoir

is evaluated by adding noise to the position sensor input.

target
system output (without threshold)

system output (with threshold)

1000 1100 1200 1300 1400 1500

C
S

M
1

v

1.0

-1.0

timestep

0

30

100

450
0.0

1.0

Fig. 5. The plots showing the timesteps from 1000 to 1500 in Fig.4. From
the upper line to the lower line, it shows the trajectory of control signal (C),
position sensor signal (S1)(unit: [POS]), motor command (M1), and speed
(v)(unit: [POS/t]). In the plots, of the sensor signal, the red line shows S1
and the green line shows S2.

0 1000 2000 3000 4000

timestep

C
S

1
x

v
0.0

1.0

450

100
1.0

0.4

0

30

Fig. 4. Examples showing the trajectories of the variables when adopting the position sensors. From the upper to the lower line, it shows the trajectory of
the control signal (C), position sensor signal (S1)(unit: [POS]), one reservoir neuron (x), and speed (v)(unit: [POS/t]). In the plots showing the trajectory of
speed, the red line shows the target trajectory, while the blue line shows the output trajectory. They are overlapped in the plot. Note: units are not shown
in the figure due to space limitation

A. Observations

The distinctive feature of a soft arm is the time delay to

transmit the motion of the arm generated by the motors from

the base to the tip since the arm is soft. This is an intrinsic

feature of a soft body that is not observed in a rigid body, for

example, a metal stick. As explained in the previous section,

the oscillatory behavior is adopted and the speed of the arm

oscillation is predefined from large to small in the order of

behavior A, B, and C. The diverse behavior of the soft arm,

which is controlled by the reservoir computing approach, is

shown in Fig.3.

B. The influence of sensor type to reservoir performance

As mentioned in previous sections, the position sensors

are not influenced by the diverse behavior of the soft arm

as these sensors reflects the value of the angles of the servo

motors. On the contrary, the force sensors are venerable to

the effect of the dynamics of the soft body as it measures

the forces on the two cables.

The behavior switching performance when the position

sensors are adopted is shown in Fig.4. It can be seen that

the dynamics of sensory data and a reservoir node, as an

example, is switched clearly according to the control signal.

Furthermore, the switching of the speed is achieved precisely.

Fig.5 shows the details between the 1000 and 1500 timesteps.

This figure shows that the pattern of the motor command is

switched clearly according as the control signal. Next, let

us check the case when the force sensors are adopted to

reveal the influence of sensor type to reservoir performance.

As shown in Fig.6, although the response of the sensors and

the dynamics of the reservoir are switched by the control

signal, a noisier pattern is observed compared with the case

when the position sensors are used. Moreover, some errors

can be observed in speed control. Fig.7 shows the details

between the timesteps of 2500 and 3000 of Fig.6. Even

the frequency of the motor command in each behavior is

achieved to some extent, there are clear errors can be seen

in the motor commands and motor speed.

C. The necessity of the reservoir

Fig.8 shows the results that no reservoir (N = 0) is used. It

can be seen that neither the motor speed (v) nor the position

sensor data (S1) has reached the desired values. The position

sensor data (S1) is keep the same means motor 1 was not

moving. Therefore, the reservoir dynamics is essential to

achieve the behavior switching.

2500 2600 2700 2800 2900 3000

C
S

M
1

v

1.0

-1.0

timestep

0

30

0

450
0.0

1.0

target
system output (without threshold)

system output (with threshold)

Fig. 7. The plots showing the timesteps from 2500 to 3000 in Fig.6. From
the upper line to the lower line, it shows the trajectory of control signal (C),
force sensor signal (S1)(unit: [FCE]), motor command, and speed (v)(unit:
[POS/t]). In the plot of the sensor signal, the red line shows S1 and the
green line shows S2.

0 1000 2000 3000 4000

timestep

C
S

1
x

v
0.0

1.0

450

0
1.0

-1.0

0

30

Fig. 6. Examples showing the trajectories of the variables when adopting the force sensors. From the upper to the lower line, it shows the trajectory
of the control signal (C), force sensor signal (S1)(unit: [FCE]), one reservoir neuron (x), and speed (v)(unit: [POS/t]). In the plots showing the trajectory
of speed, the red line shows the target trajectory, while the blue line shows the output trajectory. We can see that the output sometimes shows slightly
different value from the target value. Note: units are not shown in the figure due to space limitation

Fig. 8. Examples showing the trajectories of the variables when the reservoir was removed. From the upper to the lower line, it shows the trajectory of
the control signal (C), position sensor signal (S1)(unit: [POS]), and motor speed (v)(unit: [POS/t]). In the plot showing the trajectory of speed, the red line
shows the target trajectory, while the blue line shows the output trajectory. We can see that the output failed to achieve the desired values. Note: units are
not shown in the figure due to space limitation

D. Stability to noise

One important criterion in evaluating a physical platforms

controller is its robustness to noise. In this section, we

estimate the noise impact on the task performance by adding

noises to the position sensors data. First, we check the

errors when adding different levels of noises to the position

sensor data, shown in Fig.9. One can see a trend that both

the RMS errors of motor commands and speeds increase

with the increasing noise levels. This is consistent with the

result shown in previous section that reservoir has better

performance when using position sensors, which is not

influenced by the soft robot body dynamics and shows less

noisy data.

IV. CONCLUSIONS AND DISCUSSIONS

This study shows that it is possible to switch multiple

behaviors on-line using reservoir computing in a soft robotic

platform. The overall performance was successful to achieve

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0 10 20 30 40 50 60 70 80 90

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 10 20 30 40 50 60 70 80 90

noise levels

v

M1

E
M

E
v

Fig. 9. Plots showing the errors according to the noise levels applied to
position sensors. The upper line shows the RMS error plots of M1 (EM),
the lower one shows the RMS error of speed v (Ev).

periodic behaviors. Moreover, when two types of sensors

were used (the position sensors and the force sensors), the

performances differed. The performance was degraded when

the force sensors were used compared with position sensors

due to the body dynamics of the soft arm. In addition, when

more behaviors were embedded, the performance changed.

As the noise to the sensor data increased, the performance

gradually degraded, but the performance was not affected so

much by increasing the number of behaviors to 9. Finding

a way to realize a more stable performance is a future

objective.

In reservoir computing, it is possible to realize the simple

and robust learning by adjusting only the readout in the

training. But it is true that the performance also depends on

portions other than the readout, such as the number of nodes

and the spectral radius of the reservoir. As a matter of fact,

the performance is also changed by the physical platform to

be controlled, for instance, the type of sensor, as seen in this

study. It is possible to enhance the robustness of the reservoir

performance by looking into these issues.

Moreover, two additional aspects can be explored in future

work. First, the control signal used to change among the

behaviors can be more natural and realistic, for example,

using visual sensors and different objects as stimuli. Second,

The behavior used in this paper is a very simple periodic

behavior. To be notified, the reservoir’s performance depends

on the task to be realized. In octopus, many interesting

behaviors can be observed. For example, in reaching for

an object, the octopus uses bending propagation in the arm,

and the octopus forms a joint-like structure in the arm when

fetching an object. Clearly, further improvements are needed

to embed these behaviors. These aspects will be studied in

our future work.

REFERENCES

[1] R. Pfeifer, M. Lungarella, and F. Iida, “Bio-inspired ”soft” robotics:
The new challenges ahead (periodical style - accepted for publica-
tion),” Communications of the ACM, to be published.

[2] D. Trivedi, C. D. Rahn, W. M. Kier, and I. D. Walker, “Soft robotics:
Biological inspiration, state of the art, and future research,” Applied

Bionics and Biomechanics, vol. 5, no. 3, pp. 99–117, 2008.

[3] E. Steltz, A. Mozeika, N. Rodenberg, E. Brown, and H. M. Jaeger,
“Jsel: Jamming skin enabled locomotion,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2009), 2009, pp.
5672–5677.

[4] E. Brown, N. Rodenberg, J. Amend, A. Mozeika, E. Steltz, M. R.
Zakin, H. Lipson, and H. M. Jaeger, “Universal robotic gripper based
on the jamming of granular material,” Proceedings of the National

Academy of Science, vol. 107, pp. 18 809–18 814, 2010.

[5] R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D.
Mazzeo, X. Chen, M. Wang, and G. M. Whitesides, “Multigait soft
robot,” Proceedings of the National Academy of Sciences, 2011.

[6] X. Nie, B. Song, Y. Ge, W. Chen, and T. Weerasooriya, “Dynamic
tensile testing of soft materials,” Experimental Machanics, vol. 49 (4),
pp. 451–458, 2009.

[7] T. Gutnick, A. R. Byrne, B. Hochner, and M. Kuba, “Octopus vulgaris
uses visual information to determine the location of its arm,” Current

biology, vol. 21 (6), pp. 460–462, 2011.

[8] Y. Gutfreund, T. Flash, Y. Yarom, G. Fiorito, I. Segev, and B. Hochner,
“Organization of octopus arm movements: A model system for study-
ing the control of flexible arms,” Journal of Neuroscience, vol. 16
(22), pp. 7292–7307, 1996.

[9] Y. Gutfreund, “Patterns of arm muscle activation involved in octopus
reaching movements,” Journal of Neuroscience, vol. 18 (15), pp. 5976–
5987, 1998.

[10] G. Sumbre, G. Fiorito, T. Flash, and B. Hochner, “Neurobiology:
Motor control of flexible octopus arms,” Nature, vol. 433(7026), pp.
595–596, 2005.

[11] K. Nakajima, T. Li, N. Kuppuswamy, and R. Pfeifer, “Biologically
inspired control of a simulated octopus arm via recurrent neural
networks,” in Proceedings of the 2011 Genetic and Evolutionary

Computation Conference (GECCO 2011). ACM press, 2011, pp.
21–22.

[12] ——, “Harnessing the dynamics of a soft body with ”timing”: Octopus
inspired control via recurrent neural networks,” in Proceedings of the

15th IEEE International Conference on Advanced Robotics (ICAR

2011), 2011, pp. 277–284.
[13] ——, “How to harness the dynamics of soft body: Timing based

control of a simulated octopus arm via recurrent neural networks,”
Procedia Computer Science, vol. 7, pp. 246–247, 2011.

[14] K. Nakajima, T. Li, H. Sumioka, M. Cianchetti, and R. Pfeifer,
“Information theoretic analysis on a soft robotic arm inspired by the
octopus,” in 2011 IEEE International Conference on Robotics and

Biomimetics (ROBIO), 2011.
[15] T. Li, K. Nakajima, M. Kuba, T. Gutnick, B. Hochner, and R. Pfeifer,

“From the octopus to soft robots control: an octopus inspired behavior
control architecture for soft robots (periodical style - accepted for
publication),” Vie et Milieu/ Life and Environment, to be published.

[16] H. Jaeger, “Tutorial on training recurrent neural networks, covering
bptt, rtrl, ekf and the ”echo state network” approach,” German National
Research Center for Information Technology, Tech. Rep. 159, 2002.

[17] B. Schrauwen, D. Verstraeten, and J. V. Campenhout, “An overview
of reservoir computing: theory, applications and implementations,” in
Proceedings of the 15th European Symposium on Artificial Neural

Networks (ESANN2007), 2007, pp. 471–482.
[18] W. Maass, T. Natschlaeger, and H. Markram, “Real-time computing

without stable states: a new framework for neural computation based
on perturbations,” Neural Computation, vol. 14(11), pp. 2531–2560,
2002.

[19] M. Cianchetti, A. Arienti, M. Follador, B. Mazzolai, P. Dario, and
C. Laschi, “Design concept and validation of a robotic arm inspired
by the octopus,” Materials Science and Engineering C, vol. 31, pp.
1230–1239, 2011.

