Transverse, intra-fascicular multi-channel electrode system for induction of sensation and treatment of phantom limb pain in amputees

BioRobotics Institute Role: 

Project Lifetime
May 2008 to Apr 2013

Funding Institutions: 

European Commission

Research Program: 
Grant no.: 
SSSA Total Cost: 
631,344 €
Contribution to SSSA: 
482,258 €
Dedicated website: 

The ultimate aim of project TIME is to develop a novel Human Machine Interface (HMI) for treatment of phantom limb pain. Amputation of a limb is a surgical intervention used as a last resort to remove irreparably damaged, diseased, or congenitally malformed limbs where retention of the limb is a threat to the well-being of the individual. The procedure traumatically alters the body image, but often leaves sensations that refer to the missing body part, the phantom limb.
In 50-80% of cases, these sensations are painful and currently, there are no effective treatment modalities. Given sufficient control over a large number of nerve fibers, a neural interface may be able to artificially evoke sensations of touch, or counteract the phantom limb pain.

A novel microfabricated neural interface, the Thin-film Intrafascicular Multichannel Electrode array and an implantable multichannel stimulator system will form the key core technological developments in the project.
The work is structured in 10 work packages in three phases. The technological development phase will model, design, manufacture and characterize the multi-channel electrode (TIME) and design, manufacture and test an implantable, multi-channel stimulator. In vivo characterization phase will evaluate the TIME electrodes for biocompatibility, stability and chronic safety in animals and develop a psychophysical test platform for system integration. Finally, pre-clinical evaluation will test the system in short-term implants in amputee subjects.

The application of these micro/nano technologies with functional electrical micro stimulation is expected to not only pave the road towards a treatment, but also also provide amputees a means to sense virtual environments directly.



SMI, Aalborg University, Denmark
Scuola Superiore Sant Anna, Pisa, Italy
Universitat Autònoma de Barcelona, Spain
IMTEK, University of Freiburg, Germany
LIRMM, Montpellier, France
Neuromedics (MXM), France
Università Campus Biomedico, Rome, Italy
IUPUI, Indianapolis, USA



International Journal with peer review

Raspopovic S, Capogrosso M, Badia J, Navarro X, Micera S, 2012. Experimental validation of a hybrid computational model for selective stimulation using transverse intrafascicular multichannel electrodes. IEEE Trans Neural Syst Rehabil Eng. 2012 May;20(3):395-404.

Tombini M, Rigosa J, Zappasodi F, Porcaro C, Citi L, Carpaneto J, Rossini PM, Micera S, 2012. Combined analysis of cortical (EEG) and nerve stump signals improves robotic hand control. Neurorehabil Neural Repair. 2012 Mar-Apr;26(3):275-81.

Stieglitz T, Boretius T, Navarro X, Badia J, Guiraud D, Divoux JL, Micera S, Rossini PM, Yoshida K, Harreby KR, Kundu A, Jensen W, 2012. Development of a neurotechnological system for relieving phantom limb pain using transverse intrafascicular electrodes (TIME). Biomed Tech (Berl). 2012 Oct 5;0(0):1-9.

Sergi PN, Jensen W, Micera S, Yoshida K, 2012. In vivo interactions between tungsten microneedles and peripheral nerves. Med Eng Phys. 2012 Jul;34(6):747-55.

Cutrone A, Sergi PN, Bossi S, Micera S, 2011. Modelization of a self-opening peripheral neural interface: a feasibility study. Med Eng Phys. 2011 Dec;33(10):1254-61.

Raspopovic S, Capogrosso M, Micera S, 2011. A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode. IEEE Trans Neural Syst Rehabil Eng. 2011 Aug;19(4):333-44.

Raspopovic S, Carpaneto J, Udina E, Navarro X, Micera S, 2011. On the identification of sensory information from mixed nerves by using single-channel cuff electrodes. J Neuroeng Rehabil. 2010 Apr 27;7:17.

Rossini PM, Micera S, Benvenuto A, Carpaneto J, et al., 2010. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol. 2010 May;121(5):777-83.


Proceedings of International Conferences with peer review

Carpaneto J, Cutrone A, Bossi S, Sergi P, Citi L, Rigosa J, Rossini PM, Micera S, 2011. Activities on PNS neural interfaces for the control of hand prostheses. Conf Proc IEEE Eng Med Biol Soc. 2011; 2011:4637-40.

Ghionzoli A, Genovese V, Bossi S, Stefanini C, Micera S, 2011. Preliminary results on the design of a tool for inserting of transverse intrafascicular multichannel electrodes (TIME) into the peripheral nervous system. Conf Proc IEEE Eng Med Biol Soc. 2011; 2011:7634-8.

Jensen W, Micera S, Navarro X, Stieglitz T, Guiraud D, Divoux JL, Rossini PM, Yoshida K, 2010. Development of an implantable transverse intrafascicular multichannel electrode (TIME) system for relieving phantom limb pain. Conf Proc IEEE Eng Med Biol Soc. 2010; 2010:6214-7.

Raspopovic S, Capogrosso M, Navarro X, Micera S, 2010. Finite element and biophysics modelling of intraneural transversal electrodes: Influence of active site shape. Conf Proc IEEE Eng Med Biol Soc. 2010; 2010:1678-81.

Bossi S, Benvenuto A, Wieringa P, Di Pino G, Guglielmelli E, Boretius T, Stieglitz T, Navarro X, Micera S, 2010. Preliminary investigations on laminin coatings for flexible polyimide/platinum thin films for PNS applications. Conf Proc IEEE Eng Med Biol Soc. 2010; 2010:1527-30.

Benvenuto A, Raspopovic S, Hoffmann KP, Carpaneto J, Cavallo G, Di Pino G, Guglielmelli E, Rossini L, Rossini PM, Tombini M, Micera S, 2010. Intrafascicular thin-film multichannel electrodes for sensory feedback: Evidences on a human amputee. Conf Proc IEEE Eng Med Biol Soc. 2010; 2010:1800-3.


Meet the team